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Introduction

“A good mathematical joke,” wrote the British mathematician John
Edensor Littlewood (in the introduction to his Mathematician’s Mis-
cellany), “is better, and better mathematics, than a dozen mediocre
papers.”

This is a book of mathematical jokes, if “joke” is taken in a sense
broad enough to include any kind of mathematics that is mixed
with a strong element of fun. Most mathematicians relish such play,
though of course they keep it within reasonable bounds. There is a
fascination about recreational mathematics that can, for some per-
sons, become a kind of drug. Vladimir Nabokov’s great chess novel,
The Defense, is about such a man. He permitted chess (one form
of mathematical play) to dominate his mind so completely that he
finally lost contact with the real world and ended his miserable life-
game with what chess problemists call a suimate or self-mate. He
jumped out of a window. It is consistent with the steady disintegra-
tion of Nabokov’s chess master that as a boy he had been a poor
student, even in mathematics, at the same time that he had been
“extraordinarily engrossed in a collection of problems entitled Merry
Mathematics, in the fantastical misbehavior of numbers and the
wayward frolic of geometric lines, in everything that the schoolbook
lacked.”

The moral is this: Enjoy mathematical play, if you have the mind
and taste for it, but don’t enjoy it too much. Let it provide occasional
holidays. Let it stimulate your interest in serious science and math-
ematics. But keep it under firm control.

And if you can’t keep it under control, you can take some com-
fort from the point of Lord Dunsany’s story “The Chess-Player, the

xiii



xiv Introduction

Financier, and Another.” A financier recalls a friend named Smoggs
who was on the road to becoming a brilliant financier until he
got sidetracked by chess. “It came gradually at first: he used to
play chess with a man during the lunch hour, when he and I both
worked for the same firm. And after a while he began to beat the
fellow. . . . And then he joined a chess club, and some kind of fascina-
tion seemed to come over him; something, like drink, or more like
poetry or music . . . he could have been a financier. They say it’s no
harder than chess, though chess leads to nothing. I never saw such
brains wasted.”

“There are men like that,” agrees the prison warden. “It’s a
pity . . . ” And he locks the financier back in his cell for the night.

My thanks again to Scientific American for permission to reprint
these 20 columns. As in the two previous book collections, the
columns have been expanded, errors corrected, and much new
material added that was sent to me by readers. I am grateful, also,
to my wife for help in proofing; to my editor, Nina Bourne; and
above all, to that still-growing band of readers, scattered through-
out the nation and the world, whose welcome letters have so greatly
enriched the material reprinted here.

Martin Gardner



CHAPTER ONE

The Binary System

A red ticket showed between wiper and windshield; I carefully tore
it into two, four, eight pieces.

– Vladimir Nabokov, Lolita

the number system now in use throughout the civilized world is
a decimal system based on successive powers of 10. The digit at
the extreme right of any number stands for a multiple of 100, or 1.
The second digit from the right indicates a multiple of 101; the third
digit, a multiple of 102; and so on. Thus 789 expresses the sum of
(7 × 102) + (8 × 101) + (9 × 100). The widespread use of 10 as a
number base is almost certainly due to the fact that we have 10 fin-
gers; the very word “digit” reflects this. If a planet is inhabited by
humanoids with 12 fingers, it is a good bet that their arithmetic uses
a notation based on 12.

The simplest of all number systems that make use of the posi-
tions of digits is the binary system, based on the powers of 2. Some
primitive tribes count in binary fashion, and ancient Chinese math-
ematicians knew about the system, but it was the great German
mathematician Gottfried Wilhelm von Leibniz who seems to have
been the first to develop the system in any detail. For Leibniz, it
symbolized a deep metaphysical truth. He regarded 0 as an emblem
of nonbeing or nothing; 1 as an emblem of being or substance.
Both are necessary to the Creator, because a cosmos containing only
pure substance would be indistinguishable from the empty cos-
mos, devoid of sound and fury and signified by 0. Just as in the
binary system any integer can be expressed by a suitable placing
of 0’s and l’s, so the mathematical structure of the entire created
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2 Sphere Packing, Lewis Carroll, and Reversi

world becomes possible, Leibniz believed, as a consequence of the
primordial binary split between being and nothingness.

From Leibniz’s day until very recently the binary system was little
more than a curiosity, of no practical value. Then came the com-
puters! Wires either do or do not carry a current, a switch is on or
off, a magnet is north–south or south–north, a flip-flop memory
circuit is flipped or flopped. For such reasons enormous speed and
accuracy are obtained by constructing computers that can process
data coded in binary form. “Alas!” writes Tobias Dantzig in his book
Number, the Language of Science, “what was once hailed as a mon-
ument to monotheism ended in the bowels of a robot.”

Many mathematical recreations involve the binary system: the
game of Nim, mechanical puzzles such as the Tower of Hanoi and
the Rings of Cardan, and countless card tricks and brainteasers.
Here we shall restrict our attention to a familiar set of “mind-
reading” cards and a closely related set of punch cards with which
several remarkable binary feats can be performed.

The construction of the mind-reading cards is made clear in
Figure 1. On the left are the binary numbers from 0 through 31. Each
digit in a binary number stands for a power of 2, beginning with 20

(or 1) at the extreme right, then proceeding leftward to 21 (or 2),
22, 23, and so on. These powers of 2 are shown at the top of the
columns. To translate a binary number into its decimal equivalent,
simply sum the powers of 2 that are expressed by the positions of
the 1’s. Thus 10101 represents 16 + 4 + 1, or 21. To change 21 back
to the binary form, a reverse procedure is followed. Divide 21 by 2.
The result is 10 with a remainder of 1. This remainder is the first digit
on the right of the binary number. Next divide 10 by 2. There is no
remainder, so the next binary digit is 0. Then 5 is divided by 2, and
so on until the binary number 10101 is completed. In the last step, 2
goes into 1 no times, with a remainder of 1.

The table of binary numbers is converted to a set of mind-reading
cards simply by replacing each 1 with the decimal number that cor-
responds to the binary number in which the 1 occurs. The result is
shown at the right side of the illustration. Each column of numbers
is copied on a separate card. Hand the five cards to someone; ask
him or her to think of any number from 0 to 31 inclusive and then to
hand you all the cards on which his or her number appears. You can
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BINARY NUMBERS 

    16      8      4      2     1

Figure 1. Numbers on a set of mind-reading cards, shown on the right, are based
on the binary numbers shown on the left. (Artist: Harold Jacobs)

immediately name the number. To learn it, you have only to add the
top numbers of the cards given to you.

How does it work? Each number appears on a unique combi-
nation of cards, and this combination is equivalent to the binary
notation for that number. When you total the top numbers on the
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cards, you are simply adding the powers of 2 that are indicated by
the 1’s in the binary version of the chosen number. The working
of the trick can be further disguised by using cards of five different
colors. You can then stand across the room and tell your subject to
put all the cards bearing his or her number into a certain pocket
and all remaining cards into another pocket. You, of course, must
observe this, remembering which power of 2 goes with which color.
Another presentation is to put the five (uncolored) cards in a row on
the table. Stand across the room and ask the spectator to turn face
down those cards that bear his or her number. Because you arranged
the cards with their top numbers in order, you have only to observe
which cards are reversed to know which key numbers to add.

The binary basis of punch-card sorting is amusingly dramatized
by the set of cards depicted in Figure 2. They can be made easily
from a set of 32 file cards. The holes should be a trifle larger than the
diameter of a pencil. It is a good plan to cut five holes in one card and
then use this card as a stencil for outlining holes on the other cards.
If no punching device is available, the cutting of the holes with scis-
sors can be speeded up by holding three cards as one and cutting
them simultaneously. The cut-off corners make it easy to keep the
cards properly oriented. After five holes have been made along the
top of each card, the margin is trimmed away above certain holes
as shown in the illustration. These notched holes correspond to the
digit 1; the remaining holes correspond to 0. Each card carries in
this way the equivalent of a binary number. The numbers run from
0 through 31, but in the illustration the cards are randomly arranged.
Three unusual stunts can be performed with these cards. They
may be troublesome to make, but everyone in the family will enjoy
playing with them.

The first stunt consists of quickly sorting the cards so that their
numbers are in serial order. Mix the cards any way you please
and then square them like a deck of playing cards. Insert a pencil
through hole E and lift up an inch or so. Half the cards will cling
to the pencil, and half will be left behind. Give the pencil some
vigorous shakes to make sure all cards drop that are supposed to
drop, and then raise the pencil higher until the cards are separated
into two halves. Slide the packet off the pencil and put it in front of
the other cards. Repeat this procedure with each of the other holes,
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Figure 2. A set of punch cards that will unscramble a message, guess a selected
number, and solve logic problems. (Artist: Patra McElwee)

taking them right to left. After the fifth sorting, it may surprise you
to find that the binary numbers are now in serial order, beginning
with 0 on the card facing you. Flip through the cards and read the
Christmas message printed on them!
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The second stunt uses the cards as a computer for determining
the selected number on the set of mind-reading cards. Begin with
the punch cards in any order. Insert the pencil in hole E and ask
if the chosen number appears on the card with a top number of 1.
If the reply is yes, then lift up on the pencil and discard all cards that
cling to it. If the reply is no, then discard all cards left behind. You
now have a packet of 16 cards. Ask if the number is on the card with
a top number of 2, and then repeat the procedure with the pencil
in hole D. Continue in this manner with the remaining cards and
holes. You will end with a single punch card, and its binary number
will be the chosen number. If you like, print decimal numbers on all
the cards so that you will not have to translate the binary numbers.

The third stunt employs the cards as a logic computer in a man-
ner first proposed by William Stanley Jevons, the English economist
and logician. Jevons’ “logical abacus,” as he called it, used flat pieces
of wood with steel pins at the back so that they could be lifted from a
ledge, but the punch cards operate in exactly the same way and are
much simpler to make. Jevons also invented a complex mechanical
device, called the “logic piano,” which operated on the same princi-
ples, but the punch cards will do all that his piano could do. In fact,
they will do more, because the piano took care of only four terms,
and the cards take care of five.

The five terms A, B, C, D, and E are represented by the five holes,
which in turn represent binary digits. Each 1 (or notched hole) cor-
responds to a true term; each 0, to a false term. A line over the top of
a letter indicates that the term is false; otherwise it is true. Each card
is a unique combination of true and false terms, and because the 32
cards exhaust all possible combinations, they are the equivalent of
what is called a “truth table” for the five terms. The operation of the
cards is best explained by showing how they can be used for solving
a problem in two-valued logic.

The following puzzle appears in More Problematical Recreations,
a booklet issued by Litton Industries, founded by Charles “Tex”
Thornton in 1953 in Beverly Hills, California. “If Sara shouldn’t, then
Wanda would. It is impossible that the statements: ‘Sara should,’
and ‘Camille couldn’t,’ can both be true at the same time. If Wanda
would, then Sara should and Camille could. Therefore Camille
could. Is the conclusion valid?”
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To solve this problem, start with the punch cards in any order.
Only three terms are involved, so we shall be concerned with only
the A, B, and C holes.

A = Sara should

A = Sara shouldn’t

B = Wanda would

B = Wanda wouldn’t

C = Camille could

C = Camille couldn’t

The problem has three premises. The first – “If Sara shouldn’t,
then Wanda would” – tells us that the combination of A and B is not
permitted, so we must eliminate all cards bearing this combination.
It is done as follows. Insert the pencil in A and lift. All cards on the
pencil bear A. Hold them as a group, remove the pencil, put it in
B, and lift again. The pencil will raise all cards bearing both A and
B, which is the invalid combination, so these cards are discarded.
All remaining cards are assembled into a pack once more (the order
does not matter), and we are ready for the second premise.

The second premise is that “Sara should” and “Camille couldn’t”
cannot both be true. In other words, we cannot permit the combi-
nation AC. Insert the pencil in A and lift up all cards bearing A. These
are not the cards we want, so we place them temporarily aside and
continue with the A group that remains. Insert the pencil in C and
raise the C cards. These bear the invalid combination AC, so they are
permanently discarded. Assemble the remaining cards once more.

The last premise tells us that if Wanda would, then Sara should
and Camille could. A bit of reflection will show that this eliminates
two combinations: AB and BC. Put the pencil in hole A, lift, and con-
tinue working with the lifted cards. Insert the pencil in B; lift. No
cards cling to the pencil. This means that the two previous premises
have already eliminated the combination AB. Because the cards
all bear AB (an invalid combination), this entire packet is perma-
nently discarded. The only remaining task is to eliminate BC from
the remaining cards. The pencil in B will lift out the B cards, which
are placed temporarily aside. When the pencil is put in C of the cards
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that remain, no cards can be lifted, indicating that the invalid com-
bination of BC has already been ruled out by previous steps.

We are thus left with eight cards, each bearing a combination of
truth values for A, B, and C that is consistent with all three premises.
These combinations are the valid lines of a truth table for the com-
bined premises. An inspection of the cards reveals that C is true on
all eight, so it is correct to conclude that Camille could. Other con-
clusions can also be deduced from the premises. We can, for exam-
ple, assert that Sara should. But the interesting question of whether
Wanda would or wouldn’t remains, at least in the light of available
knowledge, an inscrutable binary mystery.

For those who would like another problem to feed the cards, here
is an easy one. In a suburban home live Abner, his wife Beryl, and
their three children, Cleo, Dale, and Ellsworth. The time is 8 p.m. on
a winter evening.

1. If Abner is watching television, so is his wife.
2. Either Dale or Ellsworth, or both of them, are watching tele-

vision.
3. Either Beryl or Cleo, but not both, is watching television.
4. Dale and Cleo are either both watching or both not watching

television.
5. If Ellsworth is watching television, then Abner and Dale are

also watching.

Who is watching television and who is not?

ADDENDUM

Edward B. Grossman, New York City, wrote to say that a variety of
commercial cards for binary filing and sorting are now available in
large stationery supply stores. Holes are preperforated and one can
buy special punches for making the slots. The holes are too small to
take pencils, but one can use knitting needles, Q-Tip sticks, opened-
out paper clips, or the sorting rods that come with some makes of
cards.

Giuseppe Aprile, a professor of engineering at the University of
Palermo, Italy, sent the two photographs shown in Figure 3. Quick,
errorless separation of the cards is made possible by a complemen-
tary row of holes and notches at the bottom edge of each card.
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Figure 3. A complementary row of holes at the bottom of cards permits errorless
sorting.

Pins through complementary holes in the bottom row anchor the
set of cards that remains when pins through the top holes remove a
set of cards.

ANSWERS

The logic problem can be solved with the punch cards as follows: Let
A, B, C, D, and E stand for Abner, Beryl, Cleo, Dale, and Ellsworth. A
term is true if the person is watching television; otherwise it is false.
Premise 1 eliminates all cards bearing AB; premise 2 eliminates DE;
premise 3 eliminates BC and BC; premise 4 eliminates CD and CD;
premise 5 eliminates AE and DE. Only one card remains, bearing the
combination ABCDE. We conclude that Cleo and Dale are watching
television, and that the others are not.

POSTSCRIPT

Paul Swinford, a semiprofessional magician in Cincinnati, devised a
deck of playing cards called the Cyberdeck that has holes and slots
along the top and bottom edges of the cards. A variety of bewilder-
ing tricks can be performed with this deck, as explained by Swinford
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in his booklet The Cyberdeck (1986). Both cards and booklet are dis-
tributed through magic supply stores.

The following anonymous statement may take a while before you
fully understand it: There are 10 types of people – those who under-
stand binary notation and those who don’t.
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CHAPTER TWO

Group Theory and Braids

the concept of “group,” one of the great unifying ideas of mod-
ern algebra and an indispensable tool in physics, has been likened
by James R. Newman to the grin of the Cheshire Cat. The body of
the cat (algebra as traditionally taught) vanishes, leaving only an
abstract grin. A grin implies something amusing. Perhaps we can
make group theory less mysterious if we do not take it too seriously.

Three computer programmers – Ames, Baker, and Coombs – wish
to decide who pays for the beer. Of course they can flip pennies,
but they prefer a random decision based on the following network-
tracing game. Three vertical lines are drawn on a sheet of paper. One
programmer, holding the paper so that his friends cannot see what
he is doing, randomly labels the lines A, B, and C (see Figure 4, left).
He folds back the top of the sheet to conceal these letters. A second
player now draws a series of random horizontal lines – call them
shuttles – each connecting two of the vertical lines (see the second
illustration of the figure). The third player adds a few more shut-
tles and then marks an X at the bottom of one of the vertical lines
(see the third illustration).

The paper is unfolded. Ames puts his finger on the top of line
A and traces it downward. When he reaches the end of a shuttle
(ignoring shuttles whose centers he may cross), he turns, follows
the shuttle to its other end, turns again, and continues downward
until he reaches the end of another shuttle. He keeps doing this
until he reaches the bottom. His path (traced by the broken line
in the fourth illustration) does not end on the X, so he does not
have to buy the drinks. Baker and Coombs now trace their lines in
similar fashion. Baker’s path ends on the X, so he picks up the tab.

11
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Figure 4. The network-tracing game. (Artist: Bunji Tagawa)

For any number of vertical lines, and regardless of how the shuttles
are drawn, each player will always end on a different line. A closer
look at this game discloses that it is based on one of the simplest of
groups, the so-called permutation group for three symbols. What,
precisely, is a group? It is an abstract structure involving a set of
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undefined elements (a, b, c . . . ) and a single undefined binary oper-
ation (here symbolized by o) that pairs one element with another to
produce a third. The structure is not a group unless it has the follow-
ing four traits:

1. When two elements of the set are combined by the operation,
the result is another element in the same set. This is called
“closure.”

2. The operation obeys the “associative law”: (a o b) o c =
a o (b o c).

3. For every element a there is one element e (called the
“identity”) such that a o e = e o a = a.

4. For every element a there is an inverse element a′ such that
a o a′ = a′ o a = e.

If in addition to these four traits the operation also obeys the
commutative law (a o b = b o a), the group is called a commutative
or Abelian group.

The most familiar example of a group is provided by the integers
(positive, negative, and zero) with respect to the operation of addi-
tion. It has closure (any integer plus any integer is an integer). It is
associative (adding 2 to 3 and then adding 4 is the same as adding
2 to the sum of 3 and 4). The identity is 0, the inverse of a positive
integer is the negative of that integer, and the inverse of a negative
integer is the positive of that integer. It is an Abelian group (2 plus
3 is the same as 3 plus 2). The integers do not form a group with
respect to division: 5 divided by 2 is 21/2, which is not an element in
the set.

Let us see how the network game exhibits group structure.
Figure 5 depicts the six basic “transformations” that are the ele-
ments of our finite group. Transformation p switches the paths of
A and B so that the three paths end in the order BAC. Transforma-
tions q, r, s, and t give other permutations. Transformation e is not
really a change, but mathematicians call it a transformation any-
way, in the same sense that a null or empty class is called a class.
It consists of drawing no shuttles at all; it is the “identity” change
that doesn’t really change anything. These six elements correspond
to the six different ways in which three symbols can be permuted.
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Figure 5. The six elements of the network-game group. (Artist: Bunji Tagawa)

Our group operation, symbolized by o, is simply that of following
one transformation with another; that is, of adding shuttles.

A quick check reveals that we have here a structure with all the
properties of a group. It has closure, because no matter how we pair
the elements we always get a permutation in the order of the paths
that can be achieved by one element alone. For example, p o t = r,
because p followed by t has exactly the same effect on the path order
as applying r alone. The operation of adding shuttles is clearly asso-
ciative. Adding no shuttles is the identity. Elements p, q, and r are
their own inverses, and s and t are inverses of each other. (When
an element and its inverse are combined, the result is the same as
drawing no shuttles at all.) It is not an Abelian group (e.g., p followed
by q is not the same as q followed by p).

The table shown in Figure 6 provides a complete description of
this group’s structure. What is the result of following r with s? We find
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Figure 6. Results of pairing elements in the network-game group. (Artist: Bunji
Tagawa)

r on the left side of the table and s at the top. The intersection of col-
umn and row is the cell labeled p. In other words, shuttle pattern r
followed by shuttle pattern s has the same effect on path order as
pattern p. This little group turns up in many places. For example, if
we label the corners of an equilateral triangle and then rotate and
reflect the triangle so that it always occupies the same position on
the plane, we find that there are only six basic transformations pos-
sible. These transformations have the same structure as the group
just described.

It is not necessary to go into group theory to see intuitively that
the network game will never permit two players to end their paths
on the same vertical line. Simply think of the three lines as three
ropes. Each shuttle has the same effect on path order as crossing
two ropes, as though forming a braid. Obviously no matter how you
make the braid or how long it is, there will always be three separate
lower ends.

Let us imagine that we are braiding three strands of a girl’s hair.
We can record successive permutations of strands by means of the
network diagram, but it will not show how the strands pass over and
under one another. If we take into account this complicating topo-
logical factor, is it still possible to call on group theory for a descrip-
tion of what we are doing? The answer is yes, and Emil Artin, a dis-
tinguished German mathematician who died in 1962, was the first to
prove it. In his elegant theory of braids, the elements of the group are
“weaving patterns” (infinite in number), and the operation consists,
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A′

A

Figure 7. Braid A is the mirror image of A′. (Artist: Bunji Tagawa)

as in the network game, of following one pattern with another. As
before, the identity element is a pattern of straight strands – the
result of doing nothing. The inverse of a weaving pattern is its mir-
ror image. Figure 7 shows a sample pattern followed by its inverse.
Group theory tells us that when an element is combined with its
inverse, the result is the identity. Sure enough, the two weaving pat-
terns combined prove to be topologically equivalent to the identity.
A tug on the end of the braid in the illustration and all strands pull
out straight. (Many magic tricks with rope, known in the trade as
releases, are based on this interesting property of groups. For a good
one, see Chapter 7 of Book 2.) Artin’s theory of braids not only pro-
vided for the first time a system that classified all types of braids; it
also furnished a method by which one could determine whether two
weaving patterns, no matter how complex, were or were not topo-
logically equivalent.

Braid theory is involved in an unusual game devised by the
Danish poet, writer, and mathematician Piet Hein. Cut a piece of
heavy cardboard into the coat-of-arms shape depicted in Figure 8.
This will be called the plaque. Its two sides must be easily distin-
guished, so color one side or mark it with an X as shown. Punch
three holes at the square end. A 2-foot length of heavy but flexible
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A B C A B C A B C

Y

Z

Figure 8. The rotation at left produces the braid in the center; the rotation in the
center produces the braid at right. (Artist: Bunji Tagawa)

cord (sash cord is excellent) is knotted to each hole. The other ends
of the three strands are attached to some fixed object such as the
back of a chair.

You will find that the plaque can be given complete rotations in
six different ways to form six different braids. It can be rotated side-
wise to the right or to the left; it can be rotated forward or back-
ward between strands A and B; it can be rotated forward or back-
ward between strands B and C. The second illustration of Figure 8
shows the braid obtained by a forward rotation through B and C.
This question arises: Is it possible to untangle this braid by weaving
the plaque in and out through the strands, keeping it horizontal at
all times, X-side up, and always pointing toward you? The answer is
no. But if you give the plaque a second rotation, in any of the six dif-
ferent ways, the result is a braid that can be untangled by weaving
the plaque without rotating it.

To make this clear, assume that the second rotation is forward
between A and B, creating the braid shown in the third illustration
of Figure 8. To remove this braid without rotating the plaque, first
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raise C at the spot marked Y and pass the plaque under it from right
to left. Pull the strings taut. Next raise A at the spot marked Z and
pass the plaque under it from left to right. The result is that the cords
pull straight.

The following surprising theorem holds for any number of
strands more than two. All braids produced by an even number
of rotations (each rotation may be in any direction whatever) can
always be untangled by weaving the plaque without rotating it;
braids produced by an odd number of full rotations can never be
untangled.

It was at a meeting in Niels Bohr’s Institute for Theoretical
Physics, in the early 1930s, that Piet Hein first heard this theorem
discussed by Paul Ehrenfest in connection with a problem in quan-
tum theory. A demonstration was worked out, by Piet Hein and oth-
ers, in which Mrs. Bohr’s scissors were fastened to the back of a chair
with strands of cord. It later occurred to Piet Hein that the rotat-
ing body and the surrounding universe entered symmetrically into
the problem and therefore that a symmetrical model could be cre-
ated simply by attaching a plaque to both ends of the cord. With
this model two persons can play a topological game. Each holds
a plaque, and the three strands are stretched straight between the
two plaques. The players take turns, one forming a braid and the
other untangling it, timing the operation to see how long it takes.
The player who untangles the fastest is the winner.

The odd–even theorem also applies to this two-person game.
Beginners should limit themselves to two-rotation braids; they may
then proceed to higher even-order braids as they develop skill. Piet
Hein calls his game Tangloids, and it has been played in Europe for
a number of years.

Why do odd and even rotations make such a difference? This is
a puzzling question that is difficult to answer without going more
deeply into group theory. A hint is supplied by the fact that two
rotations in exactly opposite directions naturally amount to no rota-
tion. And if two rotations are almost opposite, prevented from being
so only by the way certain strings pass around the plaque, then
the tangle can be untangled by moving those same strings back
around the plaque. M. H. A. Newman, in an article published in a
London mathematical journal in 1942, says that P. A. M. Dirac, the
noted University of Cambridge physicist, has for many years used
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A B C A B C A B C

Figure 9. Three problems of braid disentanglement. (Artist: Bunji Tagawa)

the solitaire form of this game as a model “to illustrate the fact that
the fundamental group of the group of rotations in 3-space has a
single generator of the period 2.” Newman then draws on Artin’s
braid theory to prove that the cords cannot be untangled when the
number of rotations is odd.

You will find it a fascinating pastime to form braids by ran-
domly rotating the plaque an even number of times, then seeing
how quickly you can untangle the cords. Three simple braids, each
formed by two rotations, are shown in Figure 9. The braid on the
left is formed by rotating the plaque forward twice through B and C;
the braid in center, by rotating the plaque forward through B and C
and then backward through A and B; the braid at right, by two side-
wise rotations to the right. Readers are invited to determine the best
method of untangling each braid.

ADDENDUM

In constructing the device used for playing Piet Hein’s game of
Tangloids, plaques cut from flat pieces of wood or plastic are, of
course, preferable to cardboard. Instead of three separate strands,
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Piet Hein recommends using one long single cord. Start it at the first
hole of one plaque (knotting the end to keep it from sliding out of
the hole); run it through the first hole of the second plaque, across
the plaque, through its middle hole, then to the middle hole of the
first plaque, across to its third hole, and back to the third hole of the
second plaque, knotting the end after it has passed through this last
hole. Because the cord can slide freely through the holes, it is easier
to manipulate the device than when it has three separate strands.
One reader wrote to say that he had joined his plaques with three
strands of elastic cord, and found that this also made the manipula-
tions much easier. The game can obviously be elaborated by adding
more strands, but three seems to be complicated enough.

It takes only a glance at the table in Figure 6 to see that the group
it depicts is not Abelian (commutative). Tables for Abelian groups
are symmetrical along an axis running from the upper left to the
lower right corner. That is, the triangular sections on either side of
this diagonal are mirror images of each other.

If the network game is played by four players instead of three, its
group is the permutation group for four symbols. This is not, how-
ever, identical with the group that describes the rotations and reflec-
tions of a square, because certain permutations of the corners of a
square are not obtainable by rotating and reflecting it. The square
transformations are a “subgroup” of the permutation group for
four symbols. All finite groups (groups with a finite number of ele-
ments) are either permutation groups or subgroups of permutation
groups.

In Artin’s 1947 paper on braid theory (see the Bibliography)
he gives a method of reducing any braid to “normal form.” This
involves pulling the first strand completely straight. The second
strand is then pulled straight except for its loops around strand 1.
Strand 3 is then pulled straight except for its loops around strands 1
and 2, and so on for the remaining strands. “Although it has been
proved that every braid can be deformed into a similar normal
form,” Artin says, “the writer is convinced that any attempt to carry
this out on a living person would only lead to violent protests and
discrimination against mathematics.”

In a brief letter from Dirac that I received too late to mention
in the column on braids, he said that he had first thought of the
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string problem about 1929, and he had used it many times since to
illustrate that two rotations of a body about an axis can be continu-
ously deformed, through a set of motions each of which ends with
the original position, into no motion at all. “It is a consequence,” he
wrote, “of this property of rotations that a spinning body can have
half a quantum of angular momentum, but cannot have any other
fraction of a quantum.”

ANSWERS

The three braid problems are solved as follows: (1) Pass the plaque
under strand C from right to left, then under strands A and B from
left to right. (2) Pass the plaque under the center of strand B from
left to right. (3) Pass the plaque, left to right, under all strands.

POSTSCRIPT

After this column appeared in Scientific American I learned from
Rosaline Tucker, in England, that the network game arose in Japan
in the mid-nineteenth century, where it has become a traditional
way of drawing lots. It is called “Amida” because the network resem-
bles the halo of rays that surround the head in pictures and statues
of Amida-butsu, the most important Buddha of the Jodo sect. See
Ms. Tucker’s article, cited in the Bibliography.
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CHAPTER THREE

Eight Problems

1. ACUTE DISSECTION

Given a triangle with one obtuse angle, is it possible to cut the tri-
angle into smaller triangles, all of them acute? (An acute triangle is
a triangle with three acute angles. A right angle is of course neither
acute nor obtuse.) If this cannot be done, give a proof of impossibil-
ity. If it can be done, what is the smallest number of acute triangles
into which any obtuse triangle can be dissected?

Figure 10 shows a typical attempt that leads nowhere. The tri-
angle has been divided into three acute triangles, but the fourth is
obtuse, so nothing has been gained by the preceding cuts.

The problem (which came to me by way of Mel Stover of
Winnipeg) is amusing because even the best mathematician is likely
to be led astray by it and come to a wrong conclusion. My pleasure
in working on it led me to ask myself a related question: “What is
the smallest number of acute triangles into which a square can be
dissected?” For days I was convinced that nine was the answer; then
suddenly I saw how to reduce it to eight. I wonder how many read-
ers can discover an eight-triangle solution, or perhaps an even bet-
ter one. I am unable to prove that eight is the minimum, though I
strongly suspect that it is.

2. HOW LONG IS A “LUNAR”?

In H. G. Wells’s novel The First Men in the Moon, our natural satellite
is found to be inhabited by intelligent insect creatures who live in
caverns below the surface. These creatures, let us assume, have a

23
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1

2 3
4

Figure 10. Can this triangle be cut into acute ones? (Artist: Amy Kasai)

unit of distance that we shall call a “lunar.” It was adopted because
the moon’s surface area, if expressed in square lunars, exactly equals
the moon’s volume in cubic lunars. The moon’s diameter is 2,160
miles. How many miles long is a lunar?

3. THE GAME OF GOOGOL

In 1958 John H. Fox, Jr., of the Minneapolis-Honeywell Regulator
Company, and L. Gerald Marnie, of the Massachusetts Institute of
Technology, devised an unusual betting game that they call Googol.
It is played as follows: Ask someone to take as many slips of paper
as he or she pleases, and on each slip write a different positive num-
ber. The numbers may range from small fractions of 1 to a number
the size of a “googol” (1 followed by a hundred 0’s) or even larger.
These slips are turned face down and shuffled over the top of a table.
One at a time you turn the slips face up. The aim is to stop turning
when you come to the number that you guess to be the largest of
the series. You cannot go back and pick a previously turned slip. If
you turn over all the slips, then of course you must pick the last one
turned.

Most people will suppose the odds against your finding the high-
est number to be at least five to one. Actually, if you adopt the best
strategy, your chances are a little better than one in three. Two ques-
tions arise. First, what is the best strategy? (Note that this is not the
same as asking for a strategy that will maximize the value of the
selected number.) Second, if you follow this strategy, how can you
calculate your chances of winning?

When there are only two slips, your chance of winning is obvi-
ously 1/2, regardless of which slip you pick. As the slips increase in
number, the probability of winning (assuming that you use the best
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Figure 11. How far does the dog trot? (Artist: Amy Kasai)

strategy) decreases, but the curve flattens quickly, and there is very
little change beyond 10 slips. The probability never drops below 1/3.
Many players will suppose that they can make the task more difficult
by choosing very large numbers, but a little reflection will show that
the sizes of the numbers are irrelevant. It is only necessary that the
slips bear numbers that can be arranged in increasing order.

The game has many interesting applications. For example, a
woman decides to marry before the end of the year. She estimates
that she will meet 10 men who will propose, but once she has
rejected a proposal, the man will not try again. What strategy should
she follow to maximize her chances of accepting her ideal man of
the 10, and what is the probability that she will succeed?

The strategy consists of rejecting a certain number of slips of
paper (or proposals) and then picking the next number that exceeds
the highest number among the rejected slips. What is needed is a
formula for determining how many slips to reject, depending on the
total number of slips.

4. MARCHING CADETS AND A TROTTING DOG

A square formation of Army cadets, 50 feet on the side, is marching
forward at a constant pace (see Figure 11). The company mascot, a
small terrier, starts at the center of the rear rank (position A in the
illustration), trots forward in a straight line to the center of the front
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AB

Figure 12. Barr’s belt (top) and an unsatisfactory way to fold it (bottom). (Artist:
Amy Kasai)

rank (position B), and then trots back again in a straight line to the
center of the rear. At the instant he returns to position A, the cadets
have advanced exactly 50 feet. Assuming that the dog trots at a con-
stant speed and loses no time in turning, how many feet does he
travel?

If you solve this problem, which calls for no more than a knowl-
edge of elementary algebra, you may wish to tackle a much more
difficult version proposed by the famous puzzlist Sam Loyd. (See
Mathematical Puzzles of Sam Loyd, Vol. 2, Dover paperback, 1960,
p. 103.) Instead of moving forward and back through the marching
cadets, the mascot trots with constant speed around the outside of
the square, keeping as close as possible to the square at all times.
(For the problem we assume that he trots along the perimeter of the
square.) As before, the formation has marched 50 feet by the time
the dog returns to point A. How long is the dog’s path?

5. BARR’S BELT

Stephen Barr of Woodstock, New York, says that his dressing gown
has a long cloth belt, the ends of which are cut at 45-degree angles
as shown in Figure 12. When he packs the belt for a trip, he likes
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to roll it up as neatly as possible, beginning at one end, but the
slanting ends disturb his sense of symmetry. However, if he folds
over an end to make it square off, then the uneven thicknesses of
cloth put lumps in the roll. He experimented with more compli-
cated folds, but try as he would, he could not achieve a rectangle
of uniform thickness. For example, the fold shown in the illustration
produces a rectangle with three thicknesses in section A and two in
section B.

“Nothing is perfect,” says one of the Philosophers in James
Stephens’ The Crock of Gold. “There are lumps in it.” Nonetheless,
Barr finally managed to fold his belt so that each end was straight
across and part of a rectangle of uniform thickness throughout. The
belt could then be folded into a neat roll, free of lumps. How did Barr
fold his belt? A long strip of paper, properly cut at the ends, can be
used for working on the problem.

6. WHITE, BLACK, AND BROWN

Professor Merle White of the mathematics department, Professor
Leslie Black of philosophy, and Jean Brown, a young stenographer
who worked in the university’s office of admissions, were lunching
together.

“Isn’t it remarkable,” observed the lady, “that our last names are
Black, Brown, and White and that one of us has black hair, one
brown hair, and one white.”

“It is indeed,” replied the person with black hair, “and have you
noticed that not one of us has hair that matches his or her name?”

“By golly, you’re right!” exclaimed Professor White.
If the lady’s hair isn’t brown, what is the color of Professor Black’s

hair?

7. THE PLANE IN THE WIND

An airplane flies in a straight line from airport A to airport B, then
back in a straight line from B to A. It travels with a constant engine
speed and there is no wind. Will its travel time for the same round
trip be greater, less, or the same if, throughout both flights, at the
same engine speed, a constant wind blows from A to B?
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Figure 13. Obtuse triangle cut into seven acute ones. (Artist: Amy Kasai)

8. WHAT PRICE PETS?

The owner of a pet shop bought a certain number of hamsters and
half that many pairs of parakeets. He paid $2 each for the hamsters
and $1 for each parakeet. On every pet he placed a retail price that
was an advance of 10 percent over what he paid for it.

After all but seven of the creatures had been sold, the owner
found that he had taken in for them an amount of money exactly
equal to what he had originally paid for all of them. His potential
profit, therefore, was represented by the combined retail value of
the seven remaining animals. What was this value?

ANSWERS

1. A number of readers sent “proofs” that an obtuse triangle can-
not be dissected into acute triangles, but of course it can. Fig-
ure 13 shows a seven-piece pattern that applies to any obtuse
triangle.

It is easy to see that seven is minimal. The obtuse angle must
be divided by a line. This line cannot go all the way to the other
side, for then it would form another obtuse triangle, which in
turn would have to be dissected; consequently the pattern for
the large triangle would not be minimal. The line dividing the
obtuse angle must, therefore, terminate at a point inside the tri-
angle. At this vertex, at least five lines must meet; otherwise the
angles at this vertex would not all be acute. This creates the
inner pentagon of five triangles, making a total of seven trian-
gles in all. Wallace Manheimer, a Brooklyn high school teacher
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P P′

Figure 14. Square cut into eight acute triangles. (Artist: Amy Kasai)

at the time, gave this proof as his solution to problem E1406
in American Mathematical Monthly, November 1960, page 923.
He also showed how to construct the pattern for any obtuse
triangle.

This question arises: Can any obtuse triangle be dissected
into seven acute isosceles triangles? The answer is no. Verner
E. Hoggatt, Jr., and Russ Denman (American Mathematical
Monthly, November 1961, pp. 912–913) proved that eight such
triangles are sufficient for all obtuse triangles, and Free Jamison
(ibid., June–July 1962, pp. 550–552) proved that eight are also
necessary. These articles can be consulted for details as to con-
ditions under which fewer than eight-piece patterns are possi-
ble. A right triangle and an acute nonisosceles triangle can each
be cut into nine acute isosceles triangles, and an acute isosceles
triangle can be cut into four congruent acute isosceles triangles
similar to the original.

A square can be cut into eight acute triangles as shown in
Figure 14. If the dissection has bilateral symmetry, points P
and P′ must lie within the shaded area determined by the four
semicircles. Donald L. Vanderpool pointed out in a letter that
asymmetric distortions of the pattern are possible with point P
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anywhere outside the shaded area, provided it remains outside
the two large semicircles.

About 25 readers sent proofs, with varying degrees of formal-
ity, that the eight-piece dissection is minimal. One, by Harry
Lindgren, appeared in Australian Mathematics Teacher, Vol. 18,
1962, pages 14–15. His proof also shows that the pattern, aside
from the shifting of points P and P′ as just noted, is unique.
H. S. M. Coxeter pointed out the surprising fact that for any
nonsquare rectangle, even though its sides differ in length by
an arbitrarily small amount, the line segment PP′ can be shifted
to the center to give the pattern both horizontal and vertical
symmetry.

Free Jamison found in 1968 that a square can be divided
into 10 acute isosceles triangles. See The Fibonacci Quarterly
(December 1968) for a proof that a square can be dissected into
any number of acute isosceles triangles equal or greater than 10.

Figure 15 shows how the pentagram (regular five-pointed
star) and the Greek cross can each be dissected into the smallest
possible number of acute triangles.

2. The volume of a sphere is 4π/3 times the cube of the radius. Its
surface is 4π times the square of the radius. If we express the
moon’s radius in “lunars” and assume that its surface in square
lunars equals its volume in cubic lunars, we can determine the
length of the radius simply by equating the two formulas and
solving for the value of the radius. The π cancels out on both
sides, and we find that the radius is three lunars. The moon’s
radius is 1,080 miles, so a lunar must be 360 miles.

3. Regardless of the number of slips involved in the game of
Googol, the probability of picking the slip with the largest num-
ber (assuming that the best strategy is used) never drops below
0.367879. This is the reciprocal of e, and the limit of the proba-
bility of winning as the number of slips approaches infinity.

If there are 10 slips (a convenient number to use in playing
the game), the probability of picking the top number is 0.398.
The strategy is to turn 3 slips, note the largest number among
them, then pick the next slip that exceeds this number. In the
long run you stand to win about two out of every five games.
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Figure 15. Minimum dissections for the pentagram and Greek cross. (Artist: Amy
Kasai)
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What follows is a compressed account of a complete analysis
of the game by Leo Moser and J. R. Pounder of the University of
Alberta. Let n be the number of slips and p the number rejected
before picking a number larger than any on the p slips. Num-
ber the slips serially from 1 to n. Let k + 1 be the number of
the slip bearing the largest number. The top number will not be
chosen unless k is equal to or greater than p (otherwise it will
be rejected among the first p slips), and then only if the high-
est number from 1 to k is also the highest number from 1 to p
(otherwise this number will be chosen before the top number is
reached). The probability of finding the top number in case it is
on the k + 1 slip is p/k, and the probability that the top number
actually is on the k + 1 slip is 1/n. Because the largest number
can be on only one slip, we can write the following formula for
the probability of finding it:

p
n

(
1
p

+ 1
p + 1

+ 1
p + 2

+ · · · + 1
n − 1

)

Given a value for n (the number of slips) we can determine
p (the number to reject) by picking a value for p that gives the
greatest value to this expression. As n approaches infinity, p/n
approaches 1/e, so a good estimate of p is simply the nearest
integer to n/e. The general strategy, therefore, when the game is
played with n slips, is to let n/e numbers go by, and then pick
the next number larger than the largest number on the n/e slips
passed up.

This assumes, of course, that a player has no knowledge of
the range of the numbers on the slips and therefore no basis
for knowing whether a single number is high or low within the
range. If one has such knowledge, the analysis does not apply.
For example, if the game is played with the numbers on 10
one-dollar bills, and your first draw is a bill with a number that
begins with 9, your best strategy is to keep the bill. For similar
reasons, the strategy in playing Googol is not strictly applica-
ble to the unmarried woman problem, as many readers pointed
out, because the woman presumably has a fair knowledge of the
range in value of her suitors, and she has certain standards in
mind. If the first man who proposes comes very close to her
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ideal, wrote Joseph P. Robinson, “she would have rocks in her
head if she did not accept at once.”

Fox and Marnie apparently hit independently on a prob-
lem that had occurred to others a few years before. A num-
ber of readers said they had heard the problem before 1958 –
one recalled working on it in 1955 – but I was unable to find
any published reference to it. The problem of maximizing the
expected value of the selected object (rather than the chance
of getting the object of highest value) seems first to have been
proposed by the famous mathematician Arthur Cayley in 1875.
(See Leo Moser, “On a Problem of Cayley,” in Scripta Mathemat-
ics, September–December 1956, pp. 289–292; also see Problem
47 in Fifty Challenging Problems in Probability with Solutions,
Frederick Mosteller, Dover, 1987.)

An industry has sprung up around this problem, its exten-
sions, and relations. For more about it, search under secretary
problem, marriage problem, search problem, relative ranks,
and stopping times. Thomas S. Ferguson’s “Who Solved the
Secretary Problem?” in Statistical Science, Vol. 4, No. 3, pages
282–296, 1989, gives an overview and some history, with com-
ments by Stephen M. Samuels, Herbert Robbins, Minoru Sak-
aguchi, and Peter R. Freeman, with a rejoinder by Thomas
S. Ferguson. Freeman’s commentary ends with this challenge:
“ . . . [T]he most common defect in papers . . . in this area is that
they assume rather than prove that the optimal policy will be
of the form ‘reject the first r − 1 applicants, then accept the
first that . . . ’. This is not necessarily true as Pressman and Sonin
(1972) were the first to show. . . . I suspect that there is fame, if
not fortune, awaiting the first person to make progress with the
deep issues underlying sequential optimality.”

What I called the Googol problem is now most often called the
secretary problem. Other names for it are the fussy suitor prob-
lem and the sultan’s daughters problem. It is probably the best
known optimal stopping problem, with hundreds of papers cov-
ering it. The problem was first stated in a 1949 lecture by Merrill
Flood, after which it circulated among mathematicians until I
seem to have been the first to publish it in my February 1960
Scientific American column.
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In the sultan’s dowry form, a sultan has 100 daughters to
which he has offered dowries of different amounts. A suitor is
allowed to meet the daughters one at a time and be told her
dowry. What should be his “stopping rule” that maximizes his
choice of marrying the daughter with the highest dowry?

Three good references are Frederic Mosteller, Fifty Challeng-
ing Problems in Probability with Solutions, 1965, Problem 475;
Ross Honsberger, Mathematical Plums, 1979, and Julian Havil,
Impossible?, 2008.

4. Let 1 be the length of the square of cadets and also the time it
takes them to march this length. Their speed will also be 1. Let
x be the total distance traveled by the dog and also its speed.
On the dog’s forward trip his speed relative to the cadets will be
x − 1. On the return trip his speed relative to the cadets will be
x + 1. Each trip is a distance of 1 (relative to the cadets), and the
two trips are completed in unit time, so the following equation
can be written:

1
x − 1

+ 1
x + 1

= 1

This can be expressed as the quadratic: x2 − 2x − 1 = 0, for
which x has the positive value of 1 + √

2. Multiply this by 50 to
get the final answer: 120.7+ feet. In other words, the dog travels
a total distance equal to the length of the square of cadets plus
that same length times the square root of 2.

Loyd’s version of the problem, in which the dog trots around
the moving square, can be approached in exactly the same way.
I paraphrase a clear, brief solution sent by Robert F. Jackson of
the Computing Center at the University of Delaware.

As before, let 1 be the side of the square and also the time it
takes the cadets to go 50 feet. Their speed will then also be 1.
Let x be the distance traveled by the dog and also his speed. The
dog’s speed with respect to the speed of the square will be x − 1
on his forward trip,

√
x2 − 1 on each of his two transverse trips,

and x + 1 on his backward trip. The circuit is completed in unit
time, so we can write this equation:

1
x − 1

+ 2√
x2 − 1

+ 1
x + 1

= 1
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Figure 16. How Barr folds his belt. (Artist: Amy Kasai)

This can be expressed as the quartic equation: x4 − 4x3 −
2x2 + 4x + 5 = 0. Only one positive real root is not extraneous:
4.18112+. We multiply this by 50 to get the desired answer:
209.056+ feet.

Theodore W. Gibson, of the University of Virginia, found that
the first form of the aforementioned equation can be written as
follows, simply by taking the square root of each side:

1√
x − 1

+ 1√
x + 1

= 1

This is remarkably similar to the equation for the first version of
the problem.

Many readers sent analyses of variations of this problem:
a square formation marching in a direction parallel to the
square’s diagonal, formations of regular polygons with more
than four sides, circular formations, rotating formations, and
so on. Thomas J. Meehan and David Salsburg each pointed out
that the problem is the same as that of a destroyer making a
square search pattern around a moving ship, and they showed
how easily it could be solved by vector diagrams on what the
Navy calls a “maneuvering board.”

5. The simplest way to fold Barr’s belt so that each end is straight
across and part of a rectangle of uniform thickness is shown in
Figure 16. This permits the neatest roll (the seams balance the
long fold) and works regardless of the belt’s length or the angles
at which the ends are cut.

6. The assumption that the “lady” is Jean Brown, the stenog-
rapher, quickly leads to a contradiction. Her opening remark
brings forth a reply from the person with black hair; there-
fore Brown’s hair cannot be black. It also cannot be brown, for
then it would match her name. Therefore it must be white. This
leaves brown for the color of Professor Black’s hair and black
for Professor White. But a statement by the person with black



36 Sphere Packing, Lewis Carroll, and Reversi

hair prompts an exclamation from White, so they cannot be the
same person.

It is necessary to assume, therefore, that Jean Brown is a man.
Professor White’s hair can’t be white (for then it would match
his or her name), nor can it be black because he (or she) replies
to the black-haired person. Therefore it must be brown. If the
lady’s hair isn’t brown, then Professor White is not a lady. Brown
is a man, so Professor Black must be the lady. Her hair can’t be
black or brown, so she must be a platinum blonde.

7. Because the wind boosts the plane’s speed from A to B and
retards it from B to A, one is tempted to suppose that these
forces balance each other so that total travel time for the com-
bined flights will remain the same. This is not the case, because
the time during which the plane’s speed is boosted is shorter
than the time during which it is retarded, so the overall effect
is one of retardation. The total travel time in a wind of con-
stant speed and direction, regardless of the speed or direction,
is always greater than if there were no wind.

8. Let x be the number of hamsters originally purchased and also
the number of parakeets. Let y be the number of hamsters
among the seven unsold pets. The number of parakeets among
the seven will then be 7 − y. The number of hamsters sold (at a
price of $2.20 each, which is a markup of 10 percent over cost)
will be x − y, and the number of parakeets sold (at $1.10 each)
will be x − 7 + y.

The cost of the pets is therefore 2x dollars for the hamsters
and x dollars for the parakeets, for a total of 3x dollars. The
hamsters that were sold brought 2.2(x − y) dollars and the para-
keets sold brought 1.1(x − 7 + y) dollars, which is a total of
3.3x − 1.1y − 7.7 dollars.

We are told that these two totals are equal, so we equate them
and simplify to obtain the following Diophantine equation with
two integral unknowns:

3x = 11y + 77

Because x and y are positive integers and y is not more than
7, it is a simple matter to try each of the eight possible values
(including zero) for y to determine which of them makes x also
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integral. There are only two such values: 5 and 2. Each would
lead to a solution of the problem were it not for the fact that the
parakeets were bought in pairs. This eliminates 2 as a value for
y because it would give x (the number of parakeets purchased)
the odd value of 33. We conclude therefore that y is 5.

A complete picture can now be drawn. The shop owner
bought 44 hamsters and 22 pairs of parakeets, paying altogether
$132 for them. He sold 39 hamsters and 21 pairs of parakeets for
a total of $132. There remained five hamsters worth $11 retail
and two parakeets worth $2.20 retail. This is a combined value
of $13.20, which is the answer to the problem.



CHAPTER FOUR

The Games and Puzzles of Lewis Carroll

the reverend Charles L. Dodgson, who wrote immortal fantasy
under the pseudonym of Lewis Carroll, was a mathematician who
delivered lectures at Oxford and penned treatises on such topics as
geometry and algebraic determinants. Only when he approached
mathematics in a less serious mood, however, did his subject and
his way of writing about it take on lasting interest. Bertrand Russell
claimed that Carroll’s only significant discoveries were two logical
paradoxes that were published in the journal Mind. Carroll also
wrote two books on logic for young people, each dealing with what
are now old-fashioned topics but containing exercise problems so
quaint and absurd that both books are now winning new readers.
His serious textbooks have long been out of print, but his original
puzzles are available today in Dover editions. Without touching on
any topics in these books, or overlapping any recreational material
in Warren Weaver’s fine article “Lewis Carroll: Mathematician” (Sci-
entific American, April 1956), let us consider some of the Reverend
Dodgson’s more obscure excursions into the game and puzzle field.

In Sylvie and Bruno Concluded, the second part of Carroll’s now
almost forgotten fantasy Sylvie and Bruno, a German professor asks
a group of house guests if they are familiar with the curious paper
ring that can be formed by giving a strip a half-twist and then joining
the ends:

“‘I saw one made, only yesterday,’ the Earl replied. ‘Muriel, my
child, were you not making one, to amuse those children you had to
tea?’

‘Yes, I know that Puzzle,’ said Lady Muriel. ‘The Ring has only one
surface, and only one edge. It’s very mysterious!’”

38
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The professor proceeds to demonstrate the close connection
between the Möbius strip and another remarkable topological mon-
strosity, the projective plane: a one-sided surface with no edges.
First he asks Lady Muriel for three of her handkerchiefs. Two are
placed together and held up by their top corners. The top edges
are sewn together, and then one handkerchief is given a half-twist
and the bottom edges are similarly joined. The result is of course a
Möbius surface with a single edge consisting of four handkerchief
edges.

The third handkerchief likewise has four edges that also form a
closed loop. If these four edges are now sewn to the four edges of the
Möbius surface, the professor explains, the result will be a closed,
edgeless surface that is like that of a sphere except that it will have
only one side.

“‘I see!’ Lady Muriel eagerly interrupted. ‘Its outer surface will be
continuous with its inner surface! But it will take time. I’ll sew it up
after tea.’ She laid aside the bag, and resumed her cup of tea. ‘But
why do you call it Fortunatus’s Purse, Mein Herr ?’

The dear old man beamed upon her. . . . ‘Don’t you see, my
child. . . . Whatever is inside that Purse, is outside it; and whatever
is outside it, is inside it. So you have all the wealth of the world in
that leetle Purse!’”

It is just as well that Lady Muriel never gets around to sewing on
the third handkerchief. It cannot be done without self-intersection
of the surface, but the proposed construction does give a valuable
insight into the structure of the projective plane.

Admirers of Count Alfred Korzybski, who founded general
semantics, are fond of saying that “the map is not the territory.”
Carroll’s German professor explains how in his country a map and
territory eventually became identical. To increase accuracy, map
makers gradually expanded the scale of their maps, first to 6 yards
to the mile, then 100 yards.

“‘And then came the grandest idea of all! We actually made a map
of the country, on the scale of a mile to the mile !’

‘Have you used it much?’ I enquired.
‘It has never been spread out, yet,’ said Mein Herr. ‘The farmers

objected: they said it would cover the whole country, and shut out
the sunlight! So we now use the country itself, as its own map, and I
assure you it does nearly as well.’”
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Figure 17. Lewis Carroll: a drawing by Harry Furniss, illustrator of Carroll’s
Sylvie and Bruno.

All this is Carroll’s way of poking fun at what he thought was
an excessive English respect for German erudition. “Nowadays,” he
wrote elsewhere, “no man of Science, that setteth any store by his
good name, will cough otherwise than thus, Ach! Euch! Auch!”

In Lewis Carroll’s Diaries, published by The Lewis Carroll Society,
1993–2007, are many entries that reflect his constant preoccupation
with recreational mathematics. On December 19, 1898, he wrote,
“Sat up last night till 4 a.m., over a tempting problem, sent me from
New York, ‘to find three equal [in area] rational-sided right-angled
triangles.’ I found two, whose sides are 20, 21, 29; 12, 35, 37; but
could not find three.” Perhaps some readers will enjoy seeing if they
can succeed where Carroll failed. Actually there is no limit to the
number of right triangles that can be found with integral sides and
equal areas, but beyond three triangles the areas are never less than
six-digit numbers. Carroll came very close to finding three such tri-
angles, as we will explain in the answer section. There is one answer
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in which the area involved, although greater than the area of each
triangle cited by Carroll, is still less than 1,000.

“I have worked out in the last few days,” Carroll records on May
27, 1894, “some curious problems on the plan of ‘lying’ dilemma.
E.g., ‘A says B lies; B says C lies; C says A and B lie.’” The question
is this: Who lies and who tells the truth? One must assume that A
refers to B’s statement, B to C’s statement, and C to the combined
statements of A and B.

Of several unusual word games invented by Carroll, the soli-
taire game of Doublets became the most popular in his day, partly
because of prize competitions sponsored by the English magazine
Vanity Fair. The idea is to take two appropriate words of the same
length, then change one to the other by a series of intermediate
words, each differing by only one letter from the word preceding.
Proper names must not be used for the linking words, and the words
should be common enough to be found in the average abridged dic-
tionary. For example, PIG can be turned into STY as follows:

PIG
WIG
WAG
WAY
SAY
STY

One must strive, of course, to effect the change with the smallest
possible number of links. For readers who enjoy word puzzles, here
are six Doublets from Vanity Fair’s first contest. It will be interesting
to see if any readers succeed in making the changes with fewer links.
The Doublets are as follows.

Prove GRASS to be GREEN.
Evolve MAN from APE.
Raise ONE to TWO.
Change BLUE to PINK.
Make WINTER SUMMER.
Put ROUGE on CHEEK.

Like so many mathematicians, Carroll enjoyed all sorts of word-
play: composing anagrams on the names of famous people (one
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of his best: William Ewart Gladstone – Wild agitator! Means well),
writing acrostic verses on the names of little girls, inventing rid-
dles and charades, making puns. His letters to his child friends were
filled with this sort of thing. In one letter he mentions his discovery
that the letters ABCDEFGI can be rearranged to make a hyphenated
word. Can anyone discover it?

Carroll’s writings abound in puns, though they incline to be
clever rather than outrageous. He once defined a “sillygism” as the
combining of two prim misses to yield a delusion. His virtuosity in
mathematical punning reached its highest point in a pamphlet of
political satire entitled Dynamics of a Parti-cle. It opens with the
following definitions:

Plain Superficiality is the character of a speech, in which any two
points being taken, the speaker is found to lie wholly with regard to
those two points. Plain Anger is the inclination of two voters to one
another, who meet together, but whose views are not in the same
direction. When a Proctor, meeting another Proctor, makes the votes
on one side equal to those on the other, the feeling entertained by
each side is called Right Anger. When two parties, coming together,
feel a Right Anger, each is said to be Complementary to the other
(though, strictly speaking, this is very seldom the case). Obtuse Anger
is that which is greater than Right Anger.

Mathematical puns also provide most of the humor for another
Carroll pamphlet, The New Method of Evaluation as Applied to π.
The π stands for the salary of Benjamin Jowett, professor of Greek
and translator of Plato, whom many suspected of harboring un-
orthodox religious views. The tract satirizes the failure of Oxford offi-
cials to agree on Professor Jowett’s salary. The following passage, in
which J stands for Jowett, will convey the pamphlet’s flavor:

It had long been perceived that the chief obstacle to the evaluation
of π was the presence of J, and in an earlier age of mathematics J
would probably have been referred to rectangular axes, and divided
into two unequal parts – a process of arbitrary elimination which is
now considered not strictly legitimate.

One can almost hear the Queen of Hearts screaming: “Off with
his head!”
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Great writers who like to indulge in wordplay are almost always
admirers of Carroll. There are many Carrollian references in James
Joyce’s Finnegans Wake, including one slightly blasphemous refer-
ence to Carroll himself: “Dodgfather, Dodgson & Coo.” It is not sur-
prising to learn that Vladimir Nabokov, whose novel Lolita is notable
not only for its startling theme but also for its verbal high jinks,
translated Alice’s Adventures in Wonderland into Russian in 1923
(not the first translation, but the best, he has said). There are other
interesting Carroll–Nabokov links. Like Carroll, Nabokov was fond
of chess (one of his novels, The Defense, is about a monomaniacal
chess player) and Humbert Humbert, the narrator of Lolita, resem-
bles Carroll in his enthusiasm for little girls. One must hasten to add
that Carroll would surely have been shocked by Lolita.

Dodgson considered himself a happy man, but there is a gen-
tle undertow of sadness that runs beneath much of his nonsense:
the loneliness of a shy, inhibited bachelor who lay awake at night
battling what he called “unholy thoughts” by inventing complicated
“pillow problems” and solving them in his head.

Yet what are all such gaieties to me

Whose thoughts are full of indices and surds?

x2 + 7x + 53 = 11/3

ADDENDUM

Lewis Carroll invented Doublets at Christmas 1877 for two girls who
“had nothing to do.” He published a number of leaflets and pam-
phlets about the game, which he first called Word-links. For details
on these publications, and a history of the game, see The Lewis Car-
roll Handbook, revised edition, edited by Roger L. Green, Oxford
University Press, pages 94–101.

Doublet problems appear in scores of old and new puzzle books.
Dmitri Borgmann, on page 155 of his Language on Vacation (Scrib-
ner’s, 1965), calls them “word ladders” and points out that the ideal
word ladder is one in which the two words have no identical let-
ters at the same positions, and the change is accomplished with the
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same number of steps as there are letters in each word. He gives as
an example COLD to WARM in four steps.

It is not surprising to find Doublets turning up (under the name
of “word golf”) in Nabokov’s Pale Fire. The novel’s mad narrator,
commenting on line 819 of the poem around which the novel is
woven, speaks of HATE to LOVE in three steps, LASS to MALE in four,
and LIVE to DEAD in five, with LEND in the middle. Solutions to the
first two are provided by Mary McCarthy in her remarkable review
of the novel (New Republic, June 4, 1962). Miss McCarthy adds some
new Doublets of her own, based on the words in the novel’s title.

John Maynard Smith, in an essay on “The Limitations of Molecu-
lar Evolution” (in The Scientist Speculates, edited by I. J. Good, Basic
Books, 1962, pp. 252–256), finds a striking resemblance between
Doublets and the process by which one species evolves into another.
If we think of the helical DNA molecule as one enormously long
“word,” then single mutations correspond to steps in the word
game. APE actually changes to MAN by a process closely analo-
gous to the playing of Doublets! Smith gives as an example the ideal
change of WORD to GENE in four steps.

ANSWERS

The answer in smallest numbers for Lewis Carroll’s problem of find-
ing three right triangles with integral sides and equal areas is 40, 42,
and 58; 24, 70, and 74; and 15, 112, and 113. In each case the area is
840. Had Carroll doubled the size of the two triangles that he found,
he would have obtained the first two triangles just cited, from which
the step to the third would have been easy. Henry Ernest Dudeney,
in the answer to Problem 107 in his Canterbury Puzzles, gives a for-
mula by which such triangle triplets can be easily found.

Carroll’s truth-and-lie problem has only one answer that does
not lead to a logical contradiction: A and C lie; B speaks the truth.
The problem yields easily to the propositional calculus by taking
the word “says” as the logical connective called equivalence. With-
out drawing on symbolic logic one can simply list the eight possi-
ble combinations of lying and truth-telling for the three men and
then explore each combination, eliminating those that lead to logi-
cal contradictions.
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Carroll’s solutions to the six Doublets are as follows: first, GRASS,
CRASS, CRESS, TRESS, TREES, FREES, FREED, GREED, GREEN;
second, APE, ARE, ERE, ERR, EAR, MAR, MAN; third, ONE, OWE,
EWE, EYE, DYE, DOE, TOE, TOO, TWO; fourth, BLUE, GLUE,
GLUT, GOUT, POUT, PORT, PART, PANT, PINT, PINK; fifth, WINTER,
WINNER, WANNER, WANDER, WARDER, HARDER, HARPER,
HAMPER, DAMPER, DAMPED, DAMMED, DIMMED, DIMMER,
SIMMER, SUMMER; and sixth, ROUGE, ROUGH, SOUGH, SOUTH,
SOOTH, BOOTH, BOOTS, BOATS, BRATS, BRASS, CRASS, CRESS,
CREST, CHEST, CHEAT, CHEAP, CHEEP, CHEEK.

The letters ABCDEFGI rearrange to make the hyphenated word
“big-faced.”

After Carroll’s answers to his Doublets appeared in Scientific
American, a large number of readers sent in shorter answers. The
following beautiful seven-step change of GRASS to GREEN was dis-
covered by A. L. Cohen, Scott Gallagher, Lawrence Jaseph, George
Kapp, Arthur H. Lord, Sidney J. Osborn, and H. S. Percival:

GRASS
CRASS
CRESS
TRESS
TREES
TREED
GREED
GREEN

Mrs. C. C. Gotlieb sent a similar seven-stepper in which the sec-
ond, third, and fourth words of the aforementioned solution are
replaced by GRAYS, TRAYS, and TREYS. If the archaic word GREES
is accepted, the change can be made in four steps, as Stephen Barr,
H. S. Percival, and Richard D. Thurston independently found:

GRASS
GRAYS
GREYS
GREES
GREEN
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Ten readers (David M. Bancroft, Robert Bauman, Frederick J.
Hooven, Arthur H. Lord, Mrs. Henry A. Morss, Sidney J. Osborn,
Dodi Schultz, George Starbuck, Edward Wellen, and a reader whose
signature was illegible) sent the following excellent five-step change
of APE to MAN:

APE
APT
OPT
OAT
MAT
MAN

Many readers found seven-step changes of ONE to TWO, but
because all contained at least one uncommon word, I award the
palm to H. S. Percival for this six-stepper:

ONE
OYE
DYE
DOE
TOE
TOO
TWO

“Oye” is a Scottish word for grandchild, but it appears in Webster’s
New Collegiate Dictionary.

BLUE was turned to PINK in seven steps by Wendell Perkins (first)
and Richard D. Thurston (second):

BLUE BLUE
GLUE BLAE
GLUT BLAT
GOUT BEAT
POUT PEAT
PONT PENT
PINT PINT
PINK PINK
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Frederick J. Hooven found this admirable eight-step change, all
with common words, of WINTER to SUMMER:

WINTER
WINDER
WANDER
WARDER
HARDER
HARMER
HAMMER
HUMMER
SUMMER

However, it can be done in seven steps by using less familiar words
(Mrs. Henry A. Morss, Richard D. Thurston, and H. S. Percival):

WINTER
LINTER
LISTER
LISPER
LIMPER
SIMPER (OR LIMMER)
SIMMER
SUMMER

Lawrence Jaseph (first) and Frederick J. Hooven (second) reduced
the change of ROUGE to CHEEK to 11 steps:

ROUGE ROUGE
ROUTE ROUTE
ROUTS ROUTS
ROOTS ROOTS
BOOTS COOTS
BLOTS COONS
BLOCS COINS
BLOCK CHINS
CLOCK CHINK
CHOCK CHICK
CHECK CHECK
CHEEK CHEEK
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POSTSCRIPT

Donald E. Knuth, a Stanford University computer scientist, devised
a word ladders program in which all common English words of five
letters (proper names excluded) are linked in a mammoth undi-
rected graph. Each word is joined to every word that differs from
it by one step in a chain. One can enter any two five-letter words
into the program and in a split second it will display the shortest
ladder, if a ladder exists, that joins the two words. It found the fol-
lowing ladder, which is shorter than the one given by Carroll (but
the same length as the one given by Lawrence Jaseph and Freder-
ick J. Hooven): ROUGE, ROUTE, ROUTS, ROOTS, SOOTS, SHOTS,
SHOES, SHOER, SHEER, CHEER, CHEEK.

Knuth’s graph has 5,757 points (words) connected by 14,135 lines.
Most word pairs can be joined by ladders. Some – Knuth calls them
“aloof” words because ALOOF is one of the words – have no neigh-
bors. There are 671 aloof words, such as EARTH, OCEAN, BELOW,
SUGAR, LAUGH, FIRST, THIRD, and NINTH. Two words, BARES and
CORES, are connected to 25 other words – none to a higher num-
ber. There are 103 pairs with no neighbors except each other, such
as ODIUM/OPIUM and MONAD/GONAD. Knuth’s 1992 Christmas
card changed SWORD to PEACE by using only words in the Bible’s
Revised Standard Edition.

Knuth describes his program in the first chapter of The Stanford
GraphBase (Addison-Wesley, 1993). He covers it more fully in the
multivolume work on combinatorics in his classic Art of Computer
Programming series. For hints on how to solve doublet problems
without a computer, see his article “Lewis Carroll’s WORD, WARD,
WARE, DARE, DAME, GAME,” in Games (July-August, 1978).

Rudy Rucker, a mathematician and writer of science fiction, has
likened doublets to a formal system. The first word is the given
“axiom.” The steps obey “transformation rules” and the final word
is the “theorem.” One seeks to “prove” the theorem by the shortest
set of transformations.

Many papers on doublets have appeared in the journal Word
Ways, a quarterly devoted to linguistic amusements. An article in
the February 1979 issue explored chains that reverse a word, such
as TRAM to MART, FLOG to GOLF, LOOPS to SPOOL, and so on.
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Figure 18. A maze drawn by Lewis Carroll in his early twenties. The object is to
find your way out of the central space. Paths cross over and under one another
but are occasionally blocked by single-line barriers.

The author wonders if an example can be found that uses six-letter
words.

Is there a closed chain, I wonder, that changes SPRING to SUM-
MER to AUTUMN to WINTER, then back to SPRING? If so, what is
the shortest solution?

A. K. Dewdney, in a Computer Recreations column in Scientific
American (August 1987), calls the graph connecting all words of n
letters a “word web.” He shows how all two-letter words are easily
joined by such a web, and he asks if anyone can construct a com-
plete web for three-letter words.
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CHAPTER FIVE

Paper Cutting

in book 2 there is a chapter (“Origami”) on recreations that involve
folding sheets of paper without cutting them. When a pair of scissors
is brought into play, a wealth of interesting new possibilities open
up, many of which serve to dramatize basic and important theorems
of plane geometry in curious ways.

For example, consider the well-known theorem that states that
the sum of the interior angles of any triangle is a straight angle (an
angle of 180 degrees). Cut a triangle from a sheet of paper. Put a
dot near the vertex of each angle, snip off the corners, and you will
find that the three dotted angles always fit together neatly to form a
straight angle (see Figure 19a). Try it with the corners of a quadrilat-
eral. The figure may be of any shape, including concave forms such
as the one shown in Figure 19b. The four snipped angles always join
to form a perigon: an angle of 360 degrees. If we extend the sides
of any convex polygon as shown in Figure 19c, the dotted angles
are called exterior angles. Regardless of how many sides the poly-
gon may have, if its exterior angles are cut out and joined, they also
will add up to 360 degrees.

If two or more sides of a polygon intersect, we have what is some-
times called a crossed polygon. The five-pointed star or pentagram,
the fraternal symbol of the ancient Pythagoreans, is a familiar exam-
ple. Rule the star as irregularly as you please (you may even include
the degenerate forms shown in Figure 20, in which one or two points
of the star fail to extend beyond the body); dot the five corners; cut
out the star; and trim off the corners. You may be surprised to find
that, as in the case of the triangle, the points of any pentagram join
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Figure 19. How to discover theorems of plane geometry by cutting polygons.
(Artist: Alex Semenoick)
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Figure 20. Sliding a match around pentagrams shows that the dotted angles add
up to 180 degrees. (Artist: Alex Semenoick)

to form a straight angle. This theorem can be confirmed by another
quaint empirical technique that might be called the “sliding-match”
method. Draw a large pentagram; then place a match alongside one
of the lines as shown in the top illustration of Figure 20. Slide the
match up until its head touches the top vertex, then swing its tail to
the left until the match is alongside the other line. The match has
now altered its orientation on the plane by an angle equal to the
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angle at the top corner of the star. Slide the match down to the next
corner and do the same thing. Continue sliding the match around
the star, repeating this procedure at each vertex. When the match is
back to its original position, it will be upside down, having made a
clockwise rotation of exactly 180 degrees. This rotation is clearly the
sum of the pentagram’s five angles.

The sliding-match method can be used for confirming all of the
theorems mentioned, as well as for finding new ones. It is a handy
device for measuring the angles of any type of polygon, including
the star forms and the helter-skelter crossed varieties. Because the
match must return to its starting position either pointing the same
way or in the opposite direction, it follows (providing the match has
always rotated in the same direction) that the sum of the traversed
angles must be a multiple of a straight angle. If the match rotates in
both directions during its trip, as is often the case with crossed poly-
gons, we cannot obtain a sum of the angles, although other theo-
rems can be stated. For instance, a match slid around the perimeter
of the crossed octagon in Figure 21 will rotate clockwise at the angles
marked A, and the same distance counterclockwise at the angles
marked B. Thus we cannot arrive at the sum of the eight angles, but
we can say that the sum of the four A angles equals the sum of the
four B angles. This can be easily verified by the scissors method or
by a formal geometrical proof.

The familiar Pythagorean theorem lends itself to many elegant
scissors-and-paper demonstrations. Here is a remarkable one dis-
covered in the nineteenth century by Henry Perigal, a London stock-
broker and amateur astronomer. Construct squares on the two legs
of any right triangle (see Figure 22). Divide the larger square (or
either square if they are the same size) into four identical parts by
ruling two lines through the center, at right angles to each other
and with one line parallel to the triangle’s hypotenuse. Cut out the
four parts and the smaller square. You will find that all five pieces
can be shifted in position, without changing their orientation on
the plane, to form one large square (shown by broken lines) on the
hypotenuse.

Perigal discovered this dissection in about 1830 but did not pub-
lish it until 1873. He was so delighted with it that he had the dia-
gram printed on his business card, and he gave away hundreds of
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Figure 21. On this crossed octagon, the sum of the angles marked A equals the
sum of those marked B. (Artist: Alex Semenoick)

puzzles consisting of the five pieces. (Someone who has not seen the
diagram will have considerable difficulty fitting the pieces together,
first to make two squares, then one large square.) It is amusing to
learn from Perigal’s obituary, in the 1899 notices of the Royal Astro-
nomical Society of London, that his “main astronomical aim in life”
was to convince others, “especially young men not hardened in the
opposite belief,” that it was a grave misuse of words to say that the
moon “rotates” as it revolves around the earth. He wrote pamphlets,
built models, and even composed poems to prove his point, “bear-
ing with heroic cheerfulness the continual disappointment of find-
ing none of them of any avail.”
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Figure 22. Henry Perigal’s scissors-and-paper demonstration of Euclid’s famous
47th proposition. (Artist: Alex Semenoick)

The dissection of polygons into pieces that form other polygons
is one of the most fascinating branches of recreational mathematics.
It has been proved that any polygon can be cut into a finite num-
ber of pieces that will form any other polygon of the same area, but
of course such dissections are of little interest unless the number
of pieces is small enough to make the change startling. Who would
imagine, for example, that the regular hexagram, or six-pointed Star
of David, could be cut (see Figure 23) into as few as five pieces that
will form a square? (The regular pentagram can be dissected into a
square with seven pieces.) Harry Lindgren, of the Australian patent
office, is perhaps the world’s leading expert on dissections of this
type. In Figure 24 we see his beautiful six-piece dissection of a regu-
lar dodecagon to a square.

A quite different class of paper-cutting recreation, more familiar
to magicians than mathematicians, involves folding a sheet of paper
several times, giving it a single straight cut, then opening up one or
both of the folded pieces to reveal some sort of surprising result. For
example, the unfolded piece may prove to be a regular geometric
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Figure 23. Harry C. Bradley discovered this dissection of a regular hexagram to a
square. (Artist: Alex Semenoick)

figure or design, or it may have a hole with such a shape. In 1955 the
Ireland Magic Company of Chicago published a small book called
Paper Capers, by Gerald M. Loe, which deals almost entirely with
such stunts. The book explains how to fold a sheet so that a sin-
gle cut will produce any desired letter of the alphabet, various types
of stars and crosses, and such complex patterns as a circular chain
of stars, a star within a star, and so on. An unusual single-cut trick
that is familiar to American magicians is known as the bicolor cut.

Figure 24. Harry Lindgren’s dissection of a regular dodecagon to a square. (Artist:
Alex Semenoick)
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A square of tissue paper, colored red and black to look like an eight-
by-eight checkerboard, is folded a certain way and then given a sin-
gle straight snip. The cut separates the red squares from the black
and simultaneously cuts out each individual square. With a sheet
of onionskin paper (the thin paper makes it possible to see outlines
through several thicknesses), it is not difficult to devise a method for
this trick, as well as methods for the single cutting of simple geomet-
rical figures; however, more complicated designs – the swastika for
instance – present formidable problems.

An old paper-cutting stunt, of unknown origin, is illustrated in
Figure 25. It is usually presented with a story about two contempo-
rary political leaders, one admired, the other hated. Both men die
and approach the gates of heaven. The Bad Guy naturally lacks the
necessary sheet of paper authorizing his admittance. He seeks the
aid of the Good Guy, standing just behind him. The Good Guy folds
his sheet of paper as shown in Figures 25a–25e and then cuts it along
the indicated dotted line. He retains the part on the right, giving the
rest to the Bad Guy. Saint Peter opens the Bad Guy’s pieces, arranges
them to form “Hell” as shown at bottom left, and sends him off.
When Saint Peter opens the paper presented by the Good Guy, he
finds it in the shape of the cross shown at bottom right.

It is obviously impossible to fold a sheet flat in such a way that a
straight cut will produce curved figures, but if a sheet is rolled into
a cone, plane slices through it will leave edges in the form of cir-
cles, ellipses, parabolas, or hyperbolas, depending on the angle of
the cut. These of course are the conic sections studied by the Greeks.
Less well known is the fact that a sine curve can be quickly produced
by wrapping a sheet of paper many times around a cylindrical can-
dle, then cutting diagonally through both paper and candle. When
unrolled, each half of the paper will have a cut edge in the form
of a sine curve, or sinusoid, one of the fundamental wave forms of
physics. The trick is also useful to the homeowner who wants to put
a rippling edge on a sheet of shelf paper.

Here are two fascinating cut-and-fold problems, both involving
cubes. The first is easy; the second, not so easy.

1. What is the shortest strip of paper 1 inch wide that can be
folded to make all six sides of a 1-inch cube?
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Figure 25. An old paper-cutting trick. (Artist: Alex Semenoick)

2. A square of paper 3 inches wide is black on one side and
white on the other. Rule the square into nine 1-inch squares.
By cutting only along the ruled lines, is it possible to cut a
pattern that will fold along the ruled lines into a cube that is
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all black on the outside? The pattern must be a single piece,
and no cuts or folds are permitted that are not along the lines
that divide the sheet into squares.

ADDENDUM

There are, of course, all sorts of traditional geometric proofs that the
points of the three different types of pentagrams shown in Figure
20 have a total of 180 degrees. The reader may enjoy working out
some of them, if only to see how much simpler and more intuitively
evident the sliding-match proofs are.

Perigal first published his Pythagorean dissection in Messenger
of Mathematics, Vol. 2, new series, 1873, pages 103–106. For bio-
graphical information on Perigal, see his obituary in the Monthly
Notices of the Royal Astronomical Society of London, Vol. 59, 1899,
pages 226–228. Some of his pamphlets are discussed by Augustus de
Morgan in his well-known Budget of Paradoxes (reprinted by Dover
in 1954).

The elegant hexagram-to-square dissection was discovered by
Edward Brind Escott, an insurance company actuary who lived in
Oak Park, Illinois, and who died in 1946. He was an expert on num-
ber theory, contributing frequently to many different mathematical
journals. His hexagram dissection is given by Henry Ernest Dudeney
as the solution to Problem 109 in Modern Puzzles (1926).

For more about Lindgren’s remarkable dissections, see Book 4
and Lindgren’s book on dissections (listed in the Bibliography).
Since Lindgren’s death, the mantle of top expert on dissections has
fallen on Greg Frederickson. See the Bibliography for three of his
books.

The general version of fold-and-single-cut problems discussed in
this chapter has been completely solved in two papers cited in the
Bibliography.

ANSWERS

The shortest strip of paper, 1 inch wide, that can be folded into a 1-
inch cube is 7 inches. A method of folding is depicted in Figure 26.
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Figure 26. How a 1-inch cube can be folded from a strip 1 inch wide and 7 inches
long. (Artist: Alex Semenoick)

If the strip is black on one side, 8 inches are necessary for folding an
all-black cube. (A way of doing this is shown in Recreational Mathe-
matics Magazine, February 1962, p. 52.)

The 3-inch-square sheet, black on one side only, can be cut and
folded into an all-black cube in many different ways. This cannot be
accomplished with a pattern of less than eight unit squares, but the
missing square inch may be in any position. Figure 27 shows how a
pattern with the missing square in the center can be folded into the
black cube. In all solutions, the cuts have a total length of five units.
(If the entire sheet is used for the pattern, the length of the cut lines
can be reduced to four.)
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Figure 27. An all-black cube can be folded with the pattern at top left. The pat-
tern is black on the underside. (Artist: Alex Semenoick)
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CHAPTER SIX

Board Games

“games possess some of the qualities of works of art,” Aldous
Huxley has written. “With their simple and unequivocal rules, they
are like so many islands of order in the vague untidy chaos of expe-
rience. When we play games, or even when we watch them being
played by others, we pass from the incomprehensible universe of
given reality into a neat little man-made world, where everything is
clear, purposive and easy to understand. Competition adds to the
intrinsic charm of games by making them exciting, while betting
and crowd intoxication add, in their turn, to the thrills of compe-
tition.”

Huxley is speaking of games in general, but his remarks apply
with special force to mathematical board games in which the out-
come is determined by pure thought, uncontaminated by physi-
cal prowess or the kind of blind luck supplied by dice, cards, and
other randomizing devices. Such games are as old as civilization
and as varied as the wings of butterflies. Fantastic amounts of men-
tal energy have been expended on them, considering the fact that
until quite recently they had no value whatever beyond that of relax-
ing and refreshing the mind. Today they have suddenly become
important in computer theory. Chess-playing and checker-playing
machines that profit from experience may be the forerunners of
electronic minds capable of developing powers as yet unimagin-
able.

The earliest records of mathematical board games are found in
the art of ancient Egypt, but they convey little information because
of the Egyptian convention of showing scenes only in profile

64
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Figure 28. Relief from a tomb at Sakkara in Egypt shows a board game in profile.
Relief dates from 2500 B.C. (Courtesy of The Metropolitan Museum of Art, Rogers
Fund, 1908)

(see Figure 28). Some games involving boards have been found in
Egyptian tombs (Figure 29), but they are not board games in the
strict sense because they also involve a chance element. A bit more
is known about Greek and Roman board games, but it was not
until the thirteenth century A.D. that anyone thought it important

Figure 29. The board game of Senet, found in an Egyptian tomb from 1400 B.C.,
also involved throwing sticks. (Courtesy of The Metropolitan Museum of Art, gift
of Egypt Exploration Fund, 1901)
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enough to record the rules of a board game, and it was not until later
that the first books on games were written.

Like biological organisms, games evolve and proliferate new
species. A few simple games, such as ticktacktoe, may remain un-
changed for centuries; others flourish for a time and then vanish
completely. The outstanding example of a dinosaur diversion is
Rithmomachy. This was an extremely complicated number game
played by medieval Europeans on a double chessboard with 8 cells
on one side and 16 cells on the other, and with pieces in the shapes
of circles, squares, and triangles. It traces back at least to the twelfth
century, and as late as the seventeenth century it was mentioned by
Robert Burton, in The Anatomy of Melancholy, as a popular English
game. Many learned treatises were written about it, but no one plays
it today except a few mathematicians and medievalists.

In the United States the two most popular mathematical board
games are of course checkers and chess. Both have long and
fascinating histories, with unexpected mutations in rules from time
to time and place to place. Today the American checkers is iden-
tical with the English “draughts,” but in other countries there are
wide variations. The so-called Polish checkers (actually invented in
France) is now the dominant form of the game throughout most of
Europe. It is played on a 10 × 10 board, each side having 20 pieces
that capture backward as well as forward. Crowned pieces (called
queens instead of kings) move like the bishop in chess, and in mak-
ing a jump they can land on any vacant cell beyond the captured
piece. The game is widely played in France (where it is called dames)
and in Holland, and it is the subject of a large analytical literature.
In the French-speaking provinces of Canada, and in parts of India,
Polish checkers is played on a 12 × 12 board.

German checkers (Damenspiel ) resembles Polish checkers, but it
is usually played on the English 8 × 8 board. A similar form of this
“minor Polish” game, as it is sometimes called, is popular in Russia,
where it is known as shashki. Spanish and Italian variants also are
closer to the English game. Turkish checkers (duma) is also played
on an 8 × 8 board, but each side has 16 pieces that occupy the sec-
ond and third rows at the outset. Pieces move and jump forward and
sideways, but not diagonally, and there are other radical departures
from both the English and the Polish forms.
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Chess likewise has varied enormously in its rules, tracing back
ultimately to an unknown origin in India, probably in the sixth cen-
tury A.D. True, there is today an international chess that is stan-
dardized, but there are still many excellent non-European forms of
the game that obviously share a common origin with international
chess. Japanese chess (shogi) is played as enthusiastically in mod-
ern Japan as go, though only the latter game is known in Western
countries. Shogi is played on a 9 × 9 board, with 20 pieces on each
side, arranged at the start on the first three rows. The game is won,
as in Western chess, by checkmating a piece that moves exactly like
the king. An interesting feature of the game is that captured pieces
can be returned to the board to be used by the captor.

Chinese chess (tséung k’i ) also ends with the checkmate of a
piece that moves like the king in Western chess, but the rules are
quite different from those of the Japanese game. Its 32 pieces rest
on the intersections of an 8 × 8 board that is divided across the
center by a blank horizontal row called the “river.” A third variant,
Korean chess (tjyang-keui), is played on the intersections of a board
that has the same pattern as the Chinese except that the “river” is
not specially marked, so the board looks like an 8 × 9 checkerboard.
The pieces are the same in number as the Chinese pieces, with the
same names and (except for the king) the same starting positions,
but the two games differ considerably in rules and the powers of the
pieces. Devotees of each of the three Oriental versions of chess look
upon the other two versions, as well as Western chess, as decidedly
inferior.

Martian chess (“jetan”), explained by Edgar Rice Burroughs in the
appendix to his novel The Chessmen of Mars, is an amusing variant,
played on a 10 × 10 board with unusual pieces and novel rules. For
example, the princess (which corresponds roughly to our king) has
the privilege of one “escape move” per game that permits her to flee
an unlimited distance in any direction.

In addition to these regional variants of chess, modern players,
momentarily bored with the orthodox game, have invented a weird
assortment of games known as fairy chess. Among the many fairy-
chess games that can be played on the standard board are these:
two-move chess, in which each player plays twice on his or her
turn; a game in which one side plays with no pawns, or with an
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extra row of pawns instead of a queen; cylindrical chess, in which
the left side of the board is considered joined to the right side (if
the board is thought of as having a half-twist before the sides are
joined, it is called Möbius-strip chess); and transportation chess, in
which any piece can be moved on top of the rook and carried by
the rook to another square. Dozens of strange new pieces have been
introduced, such as the chancellor (combining the moves of rook
and knight), the centaur (combining bishop and knight), and even
neuter pieces (e.g., a blue queen) that can be played by either side.
(In Lewis Padgett’s science-fiction novel The Fairy Chessmen, a war
is won by a mathematician who makes a hobby of fairy chess. His
mind, accustomed to breaking rules, is elastic enough to cope with
an equation too bizarre for his more brilliant but more orthodox
colleagues.)

An amusing species of fairy chess that is quite old, but still pro-
vides a delightful interlude between more serious games, is played
as follows. One player sets up his or her 16 pieces in the usual way,
but the player’s opponent has only one piece, called the maharajah.
A queen may be used for this piece, but its moves combine those
of queen and knight. It is placed at the outset on any free square
not threatened by a pawn; then the other side makes the first move.
The maharajah loses if he is captured and wins if he checkmates
the king. Pawns are not permitted to be replaced by queens or other
pieces if they advance to the last row. Without this proviso it is easy
to defeat the maharajah simply by advancing the rook pawns until
they can be queened. Because these and all the other pawns are
protected, there is no way the maharajah can prevent both pawns
from becoming queens. With three queens and two rooks in play,
the game is easily won.

Even with this proviso, it might be thought that the maharajah
has a poor chance of winning, but his mobility is so great that if
he moves swiftly and aggressively, he often checkmates early in the
game. At other times he can sweep the board clean of pieces and
then force the lone king into a corner checkmate.

Hundreds of games have been invented that are played on a stan-
dard chessboard but have nothing in common with either chess or
checkers. One of the best, in my opinion, is the now-forgotten game
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of Reversi. It uses 64 counters that have contrasting colors, say red
and black, on their opposite sides. A crude set can be made by color-
ing one side of a sheet of cardboard and then cutting out small cir-
cles; a better set can be constructed by buying inexpensive check-
ers or poker chips and gluing the pieces into red–black pairs. It is
worth the trouble, because the game can be an exciting one for every
member of the family.

Reversi starts with an empty board. One player has 32 pieces
turned red-side up; the other has 32 turned black-side up. Players
alternate in placing a single piece on the board in conformity with
the following rules.

1. The first four pieces must be placed on the four central
squares. Experience has shown that it is better for the first
player to place his second piece above, below, or to the side
of his first piece (an example is shown in Figure 30), rather
than diagonally adjacent, but this is not obligatory. By the
same token, it is wise for the second player not to play diag-
onally opposite her opponent’s first move, especially if her
opponent is a novice. This gives the first player a chance to
make the inferior diagonal move on his second play. Between
experts, the game always begins with the pattern shown in
Figure 30.

2. After the four central squares are filled, players continue
placing single pieces. Each must be placed so that it is adja-
cent to a hostile piece, orthogonally or diagonally. More-
over, it must also be placed so that it is in direct line with
another piece of the same color, and with one or more enemy
pieces (and no vacant cells) in between. In other words, a
piece must always be placed so that it is one of a pair of
friendly pieces on opposite sides of an enemy piece or at
opposite ends of a chain of enemy pieces. The enemy pieces
are considered captured, but instead of being removed they
are turned over, or “reversed,” so that they become friendly
pieces. They are, so to speak, “brainwashed” so that they join
their captors. Pieces remain fixed throughout the game but
may be reversed any number of times.
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Figure 30. An opening for the board game of Reversi. Numbers are for reference
only. (Artist: Amy Kasai)

3. If the placing of a piece simultaneously captures more than
one chain of enemy pieces, the pieces in both chains are
reversed.

4. Pieces are captured only by the placing of a hostile piece.
Chains that become flanked at both ends as a result of other
causes are not captured.

5. If a player cannot move, he loses his turn. He continues
to lose his turn until a legal move becomes possible for
him.

6. The game ends when all 64 squares are filled, or when nei-
ther player can move (either because he has no legal move
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Figure 31. If the Reversi player with colored gray pieces makes the next move,
she can win six pieces. (Artist: Amy Kasai)

or because his counters are gone). The winner is the person
with the most pieces on the board.

Two examples will clarify the rules: In Figure 30, black plays only
on cells 43, 44, 45, and 46. In each case he captures and reverses a
single piece. In Figure 31, if red plays on cell 22 she is compelled to
reverse six pieces: 21, 29, 36, 30, 38, and 46. As a result the board,
which formerly was mostly black, suddenly becomes mostly red.
Dramatic reversals of color are characteristic of this unusual game,
and it is often difficult to say who has the better game until the last
few plays are made. The player with the fewest pieces frequently has
a strong positional advantage.
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Some pointers for beginners: If possible, confine early play to the
central 16 squares, and try especially to occupy cells 19, 22, 43, and
46. The first player forced outside this area is usually placed at a dis-
advantage. Outside the central 16 squares, the most valuable cells
to occupy are the corners of the board. For this reason it is unwise
to play on cells 10, 15, 50, or 55, because this gives your opponent a
chance to take the corner cells. Next to the corners, the most desir-
able cells are those that are next but one to the corners (3, 6, 17, 24,
41, 48, 59, and 62). Avoid giving your opponent a chance to occupy
these cells. Deeper rules of strategy will occur to any player who
advances beyond the novice stage.

Little in the way of analysis has been published about Reversi; it is
hard to say who, if either player, has the advantage on even a board
as small as four-by-four. Here is a problem some readers may enjoy
trying to solve. Is it possible for a game to occur in which a player,
before his tenth move, wins by removing all the enemy pieces from
the board?

Two Englishmen, Lewis Waterman and John W. Mollett, both
claimed to be the sole inventor of Reversi. Each called the other a
fraud. In the late 1880s, when the game was enormously popular
in England, rival handbooks and rival firms for the manufacture of
equipment were authorized by the two claimants. Regardless of who
invented it, Reversi is a game that combines complexity of struc-
ture with rules of delightful simplicity, and it is a game that does not
deserve oblivion.

ADDENDUM

The game of Maharajah (which I had found in R. C. Bell’s Board and
Table Games) can always be won by the player with conventional
pieces if he plays circumspectly. Richard A. Blue, Dennis A. Keen,
William Knight, and Wallace Smith all sent strategies against which
the maharajah could not save himself, but the most efficient line of
play came from William E. Rudge, who was then a physics student
at Yale University. If Rudge’s strategy is bug free, as it seems to be,
the maharajah can always be captured in 25 or fewer moves.

The strategy is independent of the moves made by M (the
maharajah) except for three possible moves. Only the moves of the
offense are listed here.
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1. P – QR4 corner-to-corner
2. P – QR5 diagonal, permitting the
3. P – QR6 following move.
4. P – QR7 16. B – QN2
5. P – K3 17. R – QR1
6. N – KR3 18. R – K6
7. N – KB4 19. KR – QR6
8. B – Q3 20. R – K7
9. Castles M is forced to retreat to his

10. Q – KR5 first row.
11. N – QB3 21. KR – K6
12. QN – Q5 22. B – KN7
13. R – QR6 This move need be made
14. P – QN4 only if M is on his KB1 or KN1.
M is now forced to move to 23. P – QB3
his first or second row. This move is made only if
15. P – KR3 M is on his KN1.
This move is made only if 24. Q – K8
M is on his KN2. The move The maharajah can now be
forces M to leave the captured on the next move.

Moves 1 through 4 may be interchanged with moves 5 through
9, provided the sequence in each group is maintained. This inter-
change may be necessary if the maharajah blocks a pawn. Moves
15 and 22 are stalling moves, which are required only when the
maharajah is on the squares indicated. Move 23 is required only
if the maharajah must be forced over to the queen’s side of the
board.

Not much is known about the early history of Reversi. It seems to
have first appeared in London in 1870 as “The Game of Annexation,”
played on a cross-shaped board. A second version, using the stan-
dard 8 × 8 checkerboard, was called “Annex, a Game of Reverses.” By
1888 the name had become Reversi, and the game was something of
a fad in England. Articles about it ran in a London newspaper called
The Queen in the spring of 1888. Later, an elaboration called “Royal
Reversi,” using cubes with differently colored sides, was manufac-
tured by the London firm of Jacques & Son. (For a description of
Royal Reversi and a picture of the board, see The Book of Table
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Games, by “Professor Hoffman,” the pen name of Angelo Lewis,
pp. 621–623.)

Reversi, and games derived from it, have been sold in more
recent years, in the United States, under a variety of names. In 1938
Milton Bradley introduced Chameleon, a variant of Royal Reversi.
Tryne Products brought out Reversi, about 1960, as a game called
“Las Vegas Backfire.” Exit, a game that appeared in England in 1965,
is Reversi played on a board with circular cells. A fixed cover for each
cell can be turned to make the cell red, blue, or white (neutral), thus
eliminating the need for pieces.

ANSWERS

Can a Reversi player, in fewer than 10 moves, win a game by elimi-
nating every enemy piece? The answer is yes. In my Scientific Amer-
ican column I gave what I believed then to be the shortest possible
Reversi game (corresponding to the “fool’s mate” of chess), the first
player winning on his eighth move. (I had found the game in an old
Reversi handbook.) But two readers discovered shorter games.

D. H. Peregrine, of Jesus College, Oxford, sent the following six-
mover:

First Player Second Player
28 29
36 37
38 45
54 35
34 27
20

Jon Petersen, of Menlo Park, California, sent this slightly different
six-move win:

First Player Second Player
36 28
37 29
21 30
39 44
35 45
53
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POSTSCRIPT

To my surprise, in 1976 the American toy company Gabriel intro-
duced a game called Othello, which became the year’s best-selling
board game. I was surprised because Othello is simply Reversi
except for a trivial difference in rules. Reversi permits either of the
two possible starting positions on the four center squares. Othello
prohibits the position shown in Figure 30, allowing only the pattern
with the same colors diagonally opposite.

Time magazine reported (November 22, 1976, p. 97) that Othello
had been “invented” in 1971 by a Japanese drug company salesman
named Goro Hasegawa. By 1975, four million sets had been sold
in Japan. Gabriel bought rights to the game without knowing they
were buying a product long in the public domain. (My column on
Reversi had been published in 1960.) Gabriel’s three identical adver-
tisements in The New York Times Magazine (October 31, 1976) called
it a “new board game.” Of course only the name was new.

Time (December 27, 1976) ran two letters from readers pointing
out the identity of Othello and Reversi. Mrs. Elizabeth Carter likened
the Japanese claim to Soviet claims of having invented the light bulb.
She added that in the early 1920s she had played the game with her
aunt, using the pasteboard tops then on glass milk bottles.

I was interviewed about all this by Joe Kennedy, of the Roanoke
Times and World News (Sunday, October 25, 1977). The article
was headed “Othello Unmasked as New Name for Old English
Game.” I told Kennedy I had spoken on the phone with the head
of Gabriel. He said he didn’t mind learning that Othello was an old
game because he had paid for the copyrighted new name, and for
Japanese “pretesting” of the product.

Annual Othello tournaments were and are still being held around
the world. Here and there, computer programs have been writ-
ten that defeat all but top experts. Fidelity Electronics introduced
Reversi Challenger, a Reversi-playing machine priced at $156. (See
its advertisement in Games, November 1983.)

Jonathan Cerf, a son of the noted Random House editor and
writer Bennett Cerf, was assigned by Games magazine to write an
article about Othello. In researching the piece he participated in
an early Othello contest, and he became so intrigued that he began
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an intensive study of the game. This led to his becoming a U. S.
Othello champion, and in 1980 he was the first and still the only
non-Japanese to win the world tournament. To date, Cerf and two
Frenchmen have been world champions; all the others have been
Japanese. Cerf is now retired from active play.

In 1979 Cerf was a founder and first editor of Othello Quarterly,
the first and best of many Othello periodicals now published in
England and many European nations. Othello Quarterly has been
edited since 1986 by Clarence Hewlett, and it is published by the
United States Othello Players Association, 920 Northgate Avenue,
Waynesboro, Virginia 22980.

Byte (July 1980) reported on the first Othello contest between
humans and computers, held at Northwestern University. It was
won by Hiroshi Inoue, then world champion from Japan. The
second-place winner was a program written by Dan and Kathe
Spraclen, best known for their chess program Sargon.

Othello boards and pieces are now sold in almost every techno-
logically advanced nation. World tournaments are still held every
year, each time in a different country. In 2008 the world champion
was an Italian, Michele Borassi. The 2008 world tournament was
held in Oslo, Norway.

In 1987 I received a fascinating letter from Peter Michaelsen, of
Denmark. (I was unable to thank him because there was no address
on the letter.) Reversi, he told me, has had dozens of names in
Denmark, such as Tourne, Klak, and Omslay. There is some evi-
dence, he said, that the game may have originated in China before
the two rival Englishmen claimed to have invented it. The Chinese
version is called Fan Mien, which means to turn or reverse.

I gave two shortest possible Reversi games, both opening with the
pattern forbidden by Othello rules. Michaelsen reported that David
Haigh, in England, had proved that there were two more games of
the same length based on this opening. If the Othello opening is
used, there are 57 ways the first player can win on his seventh move.
These were discovered in 1975 by Manubu Maruo and confirmed by
computer.

Wikipedia, under the word “Reversi,” has a good discussion of
strategy in playing the game, its history, and a short list of references.
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The Japanese named the game Othello after Shakespeare’s play in
which Othello, a black Moor, is married to Desdemona, who is
white – a symbol of the two faces of Reversi pieces.

As it is for checkers, for many years Othello computers have been
superior to human grandmasters. In 1997 a program called Logis-
tello defeated world champion Takeshi Murakami 6 to 0. Unlike
checkers, recently proved to be a draw in perfect play, Reversi
remains unsolved although it is widely believed to be a draw. On
small boards, say, 4 × 4 and 6 × 6 the game is a win for the sec-
ond player. Many console versions of Reversi are on the market.
Wikipedia lists world champions, most of them Japanese, by year.
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CHAPTER SEVEN

Packing Spheres

spheres of identical size can be piled and packed together in many
different ways, some of which have fascinating recreational fea-
tures. These features can be understood without models, but if the
reader can obtain a supply of 30 or more spheres, he will find them
an excellent aid to understanding. Table-tennis balls are perhaps
the best for this purpose. They can be coated with rubber cement,
allowed to dry, then stuck together to make rigid models. First let us
make a brief two-dimensional foray. If we arrange spheres in square
formation (see Figure 32, right), the number of balls involved will
of course be a square number. If we form a triangle (see Figure 32,
left), the number of balls is a triangular number. These are the sim-
plest examples of what the ancients called “figurate numbers.” They
were intensively studied by early mathematicians (a famous treatise
on them was written by Blaise Pascal), and although little attention
is paid them today, they still provide intuitive insights into many
aspects of elementary number theory.

For example, it takes only a glance at the left side of Figure 32
to see that the sum of any number of consecutive positive integers,
beginning with 1, is a triangular number. A glance at the right side
of Figure 32 shows that square numbers are formed by the addi-
tion of consecutive odd integers, beginning with 1. Figure 33 makes
immediately evident an interesting theorem known to the ancient
Pythagoreans: Every square number is the sum of two consecu-
tive triangular numbers. The algebraic proof is simple. A triangu-
lar number with n units to a side is the sum of 1 + 2 + 3 + · · · + n,
and it can be expressed by the formula 1

2n(n + 1). The preceding
triangular number has the formula 1

2n(n − 1). If we add the two

80
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Figure 32. The basis of (left) triangular numbers and (right) square numbers.
(Artist: James Egleson)

formulas and simplify, the result is n2. Are there numbers that are
simultaneously square and triangular? Yes, there are infinitely many
of them. The smallest (not counting 1, which belongs to any figu-
rate series) is 36; then the series continues: 1225, 41616, 1413721,
48024900. . . . There are simple nonrecursive procedures for calcu-
lating the next term of this series. Here is one: Subtract 1 from the
last term, square the result, and then divide by the preceding term.
Here is another: Multiply the last term by 34, subtract the previous
term, and then add 2. For more on figurate numbers, see Chapter 2
of Book 12.

21 

28

49

Figure 33. Square and triangular numbers are related. (Artist: James Egleson)
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Three-dimensional analogies of the plane-figurate numbers are
obtained by piling spheres in pyramids. Three-sided pyramids, the
base and sides of which are equilateral triangles, are models of what
are called the tetrahedral numbers. They form the series 1, 4, 10, 20,
35, 56, 84, and so on, and they can be represented by the formula
1
6n(n + 1)(n + 2), where n is the number of balls along an edge. Four-
sided pyramids, with square bases and equilateral triangles for sides
(i.e., half of a regular octahedron), represent the (square) pyramidal
numbers 1, 5, 14, 30, 55, 91, 140, and so on. They have the formula
1
6n(n + 1)(2n + 1). Just as a square can be divided by a straight line
into two consecutive triangles, so can a square pyramid be divided
by a plane into two consecutive tetrahedral pyramids. (If you build a
model of a pyramidal number, the bottom layer has to be kept from
rolling apart. This can be done by placing rulers or other strips of
wood along the sides.)

Many old puzzles exploit the properties of these two types of
pyramidal numbers. For example, in making a courthouse monu-
ment out of cannon balls, what is the smallest number of balls that
can first be arranged on the ground as a square, then piled in a
square pyramid? The surprising thing about the answer (4,900) is
that it is the only answer. (The proof of this is difficult and was
not achieved until 1918.) Another example: A grocer is display-
ing oranges in two tetrahedral pyramids. By putting together the
oranges in both pyramids he is able to make one large tetrahedral
pyramid. What is the smallest number of oranges he can have? If the
two small pyramids are the same size, the unique answer is 20. If
they are different sizes, what is the answer?

Imagine now that we have a very large box, say a crate for a piano,
which we wish to fill with as many golf balls as we can. What packing
procedure should we use? First we form a layer packed as shown
by the unshaded circles in Figure 34. The second layer is formed by
placing balls in alternate hollows as indicated by the shaded circles
with black rims. In making the third layer we have a choice of two
different procedures:

1. We place each ball on a hollow A that is directly above a ball
in the first layer. If we continue in this way, placing the balls
of each layer directly over those in the next layer but one, we
produce a structure called hexagonal close-packing.
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Figure 34. In hexagonal close-packing, balls go in hollows labeled A; in cubic
close-packing, in hollows labeled B. (Artist: James Egleson)

2. We place each ball in a hollow B, directly above a hollow in
the first layer. If we follow this procedure for each layer (each
ball will be directly above a ball in the third layer beneath it),
the result is known as cubic close-packing. Both the square
and the tetrahedral pyramids have a packing structure of this
type, though on a square pyramid the layers run parallel to
the sides rather than to the base.

In forming the layers of a close-packing we can switch back and
forth whenever we please from hexagonal to cubic packing to pro-
duce various hybrid forms of close-packing. In all these forms –
cubic, hexagonal, and hybrid – each ball touches 12 other balls that
surround it, and the density of the packing (the ratio of the volume
of the spheres to the total space) is π/

√
18 = 0.74048+, or almost

75 percent.
Is this the largest density obtainable? No denser packing is

known, but in an article published in 1958 (on the relation of close-
packing to froth) H. S. M. Coxeter, of the University of Toronto, made
the startling suggestion that perhaps the densest packing has not yet
been found. It is true that no more than 12 balls can be placed so that
all of them touch a central sphere, but a thirteenth ball can almost
be added. The large leeway here in the spacing of the 12 balls, in
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contrast to the complete absence of leeway in the close-packing of
circles on a plane, suggests that there might be some form of irreg-
ular packing that would be denser than 0.74. No one has yet proved
that no denser packing is possible, or even that 12 point-contacts
for each sphere are necessary for densest packing. As a result of
Coxeter’s conjecture, George D. Scott, of the University of Toronto,
recently made some experiments in random packing by pouring
large numbers of steel balls into spherical flasks and then weighing
them to obtain the density. He found that stable random packings
had a density that varied from about 0.59 to 0.63. So, if there is a
packing denser than 0.74, it will have to be carefully constructed on
a pattern that no one has yet thought of.

Assuming that close-packing is the closest packing, readers may
like to test their packing prowess on this exceedingly tricky little
problem. The interior of a rectangular box is 10 inches on each side
and 5 inches deep. What is the largest number of steel spheres 1 inch
in diameter that can be packed in this space?

If close-packed circles on a plane expand uniformly until they
fill the interstices between them, the result is the familiar hexag-
onal tiling of bathroom floors. (This explains why the pattern is
so common in nature: the honeycomb of bees, a froth of bubbles
between two flat surfaces almost in contact, pigments in the retina,
the surface of certain diatoms, and so on.) What happens when
closely packed spheres expand uniformly in a closed vessel, or when
they are subjected to uniform pressure from without? Each sphere
becomes a polyhedron, its faces corresponding to planes that were
tangent to its points of contact with other spheres. Cubic close-
packing transforms each sphere into a rhombic dodecahedron (see
Figure 35, top), the 12 sides of which are congruent rhombi. Hexa-
gonal close-packing turns each ball into a trapezo-rhombic dodeca-
hedron (see Figure 35, bottom), six faces of which are rhombic and
six trapezoidal. If this figure is sliced in half along the gray plane and
one half is rotated 60 degrees, it becomes a rhombic dodecahedron.

In 1727 the English physiologist Stephen Hales wrote in his book
Vegetable Staticks that he had poured some fresh peas into a pot,
compressed them, and obtained “pretty regular dodecahedrons.”
The experiment became known as the “peas of Buffon” (because the
Comte de Buffon later wrote about a similar experiment), and most
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Figure 35. Packed spheres expand into dodecahedrons. (Artist: James Egleson)

biologists accepted it without question until Edwin B. Matzke, a
botanist at Columbia University, repeated the experiment. Because
of the irregular sizes and shapes of peas, their nonuniform consis-
tency and the random packing that results when peas are poured
into a container, the shapes of the peas after compression are too
random to be identifiable. In experiments reported in 1939, Matzke
compressed lead shot and found that if the spheres had been cubic
close-packed, rhombic dodecahedrons were formed, but if they had
been randomly packed, irregular 14-faced bodies predominated.
These results have important bearing, Matzke has pointed out, on
the study of such structures as foam, and living cells in undifferen-
tiated tissues.

The problem of closest packing suggests the opposite question:
What is the loosest packing; that is, what rigid structure will have the
lowest possible density? For the structure to be rigid, each sphere
must touch at least four others, and the contact points must not
be all in one hemisphere or all on one equator of the sphere. In his
Geometry and the Imagination, first published in Germany in 1932,
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Figure 36. The Heesch and Laves loose packing. Large spheres are first packed
as shown on left; then each sphere is replaced by three smaller spheres to obtain
the packing shown on right. It has a density of 0.055+.

David Hilbert describes what was then believed to be the loosest
packing: a structure with a density of 0.123. In the following year,
however, two Dutch mathematicians, Heinrich Heesch and Fritz
Laves, published the details of a much looser packing with a density
of only 0.0555 (see Figure 36). Whether there are still looser packings
is another intriguing question that, like the question of the closest
packing, remains undecided.

ADDENDUM

The unique answer of 4,900 for the number of balls that will form
both a square and a square-based pyramid was proved by G. N.
Watson in Messenger of Mathematics, new series, Vol. 48, 1918, pages
1–22. This had been conjectured as early as 1875 by the French
mathematician Edouard Lucas. Henry Ernest Dudeney makes the
same guess in his answer to problem 138, Amusements in Mathe-
matics (1917).

There is a large literature on numbers that are both triangular and
square. Highlights are cited in an editorial note to Problem E1473,
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American Mathematical Monthly, February 1962, page 169, and the
following formula for the nth square triangular number is given:

(17 + 12
√

2)n + (17 − 12
√

2)n − 2
32

The question of the densest possible regular packing of spheres
has been solved for all spaces up through eight dimensions. In
3-space, the question is answered by the regular close-packings
described earlier, which have a density of 0.74+. But, as Constance
Reid notes in her Introduction to Higher Mathematics (1959), when
9-space is considered, the problem takes one of those sudden,
mysterious turns that so often occur in the geometries of higher
Euclidean spaces. As far as I know, no one yet knows how to regu-
larly close-pack hyperspheres in 9-space.

Nine-space is also the turning point for the related problem of
how many congruent spheres can be made to touch another sphere
of the same size. It was not until 1953 that K. Schütte and B. L. van
der Waerden (in Das Problem der dreizehn Kugeln, Mathematische
Annalen, Vol. 125, 1953, pp. 325–334) first proved that the answer in
3-space is 12. (For a later proof, see “The Problem of the 13 Spheres”
by John Leech, in Mathematical Gazette, Vol. 40, No. 331, February
1956, pp. 22–23.) The corresponding problem on the plane has the
obvious answer of 6 (no more than six pennies can touch another
penny), and if we think of a straight line as a degenerate “sphere,”
the answer for 1-space is 2. In four dimensions it has been proved
that 24 hyperspheres can touch a twenty-fifth sphere, and for spaces
of 5, 6, and 7 dimensions, the maximum number of hyperspheres is
conjectured to be 40, 72, and 126 respectively. In 8-space, the num-
ber is known to be 240. In 9-space, the problem is still unsolved.

In 1611 Johannes Kepler conjectured that the hexagonal close-
packing of spheres – a packing believed for centuries to be the
densest possible – was indeed the densest. Beginning in 1991
Wu-Yi Hsiang published papers and a monograph culminating
in a proof of Kepler’s conjecture, but errors were found, and the
consensus was that the proof was faulty. In 1998 Thomas Hales
(then at the University of Michigan, now at the University of Pitts-
burgh) published a convincing proof. His computer-assisted result
required some 250 pages, so that after 400 years Kepler’s famous
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guess has finally been confirmed. Hales devised a cooperative pro-
gram called Flyspeck, the F, P, and K being the initials of Formal Proof
of Kepler.

There is some empirical evidence, coming from physicists rather
than mathematicians, that in much higher dimensions a random
packing of unit spheres may be denser than orderly packing! An
article on this startling conjecture, in the fall issue of Experimental
Mathematics, was summarized in Science News, October 14, 2006.

ANSWERS

The smallest number of oranges that will form two tetrahedral pyra-
mids of different sizes, and also one larger tetrahedral pyramid, is
680. This is a tetrahedral number that can be split into two smaller
tetrahedral numbers: 120 and 560. The edges of the three pyramids
are 8, 14, and 15.

A box 10 inches square and 5 inches deep can be close-packed
with 1-inch-diameter steel balls in a surprising variety of ways, each
accommodating a different number of balls. The maximum num-
ber, 594, is obtained as follows: Turn the box on its side and form
the first layer by making a row of 5, then a row of 4, then of 5, and
so on. It is possible to make 11 rows (6 rows of 5 each, 5 rows of 4
each), accommodating 50 balls and leaving a space of more than 0.3
inch to spare. The second layer also will take 11 rows, alternating 4
and 5 balls to a row, but this time the layer begins and ends with
4-ball rows, so that the number of balls in the layer is only 49. (The
last row of four balls will project 0.28+ inch beyond the edge of the
first layer, but because this is less than 0.3 inch, there is space for
it.) Twelve layers (with a total height of 9.98+ inches) can be placed
in the box, alternating layers of 50 balls with layers of 49, to make a
grand total of 594 balls.

POSTSCRIPT

Although great progress has been made on finding dense packings
for spheres in dimensions higher than 3, there is still no accepted
proof that the 0.74+ density ( π/

√
18 ) is the best, although almost

all geometers assume it is. Douglas Muder, of the Mitre Corporation,



Packing Spheres 89

Bedford, Massachusetts, proved that 3-space packing cannot exceed
0.77836.

In 4-space it is known that the “kissing number” for equal spheres
is either 24 or 25. Stanislaw Ulam told me in 1972 that he suspected
the sphere was the worst case of dense packing of identical convex
solids, but that this would be difficult to prove.

For data on the best known sphere packings in spaces 4 through
13, see Chapter 3 of Book 8.
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CHAPTER EIGHT

The Transcendental Number π

Pi’s face was masked, and it was understood that none could
behold it and live. But piercing eyes looked out from the mask,
inexorable, cold, and enigmatic.

– Bertrand Russell, “The Mathematician’s Nightmare,”
in Nightmares of Eminent Persons

the ratio of a circle’s circumference to its diameter, symbolized by
the Greek letter π , pops up in all sorts of places that have nothing
to do with circles. The English mathematician Augustus De Morgan
once wrote of π as “this mysterious 3.14159 . . . which comes in at
every door and window, and down every chimney.” To give one
example, if two numbers are picked at random from the set of posi-
tive integers, what is the probability that they will have no common
divisor? The surprising answer is six divided by the square of π . It is
π ’s connection with the circle, however, that has made it the most
familiar member of the infinite class of transcendental numbers.

What is a transcendental number? It is described as an irrational
number that is not the root of an algebraic equation that has rational
coefficients. The square root of 2 is irrational, but it is an “algebraic
irrational” because it is a root of the equation x 2 = 2. The number π

cannot be expressed as the root of such an equation but only as the
limit of some type of infinite process. The decimal form of π , like
that of all irrational numbers, is endless and nonrepeating.

No fraction, with integers above and below the line, can exactly
equal π , but there are many simple fractions that come amazingly
close. The most remarkable was recorded in the fifth century A.D.
by Tsu Ch’ung-Chih, a famous Chinese astronomer, and was not
discovered in the Occident until 1,000 years later. We can obtain

91
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this fraction by a kind of numerological hocus-pocus. Write the
first three odd integers in pairs: 1, 1; 3, 3; 5, 5; then put the last
three above the first three to make the fraction 355/113. It is hard
to believe, but this gives π to an accuracy of six decimal places.
There are also roots that come close to π . The square root of 10
(3.162 . . . ) was widely used for π in ancient times, but the cube root
of 31 (3.1413 . . . ) is much closer. (More numerology: 31 comprises
the first two digits of π .) A cube with a volume of 31 cubic inches
would have an edge that differed from π by less than a thousandth
of an inch. And the sum of the square root of 2 and the square root
of 3 is 3.146+, also not a bad approximation.

Early attempts to find an exact value for π were closely linked
with attempts to solve the classic problem of squaring the circle. Is it
possible to construct a square, using only a compass and a straight-
edge, that is exactly equal in area to the area of a given circle? If π

could be expressed as a rational fraction or as the root of a first- or
second-degree equation, then it would be possible, with compass
and straightedge, to construct a straight line exactly equal to the cir-
cumference of a circle. The squaring of the circle would quickly fol-
low. We have only to construct a rectangle with one side equal to the
circle’s radius and the other equal to half the circumference. This
rectangle has an area equal to that of the circle, and there are sim-
ple procedures for converting the rectangle to a square of the same
area. Conversely, if the circle could be squared, a means would exist
for constructing a line segment exactly equal to π . However, there
are ironclad proofs that π is transcendental and that no straight
line of transcendental length can be constructed with compass and
straightedge.

There are hundreds of approximate constructions of π ; one of the
most accurate is based on the Chinese astronomer’s fraction men-
tioned earlier. In a quadrant of unit radius, draw the lines shown in
Figure 37 so that BC is 7/8 of the radius, DG is 1/2, DE is parallel
to AC, and DF is parallel to BE. The distance FG is easily shown to
be 16/113 or 0.1415929+. Because 355/113 is 3 + 16/113, we draw a
line that is three times the radius, extend it by the distance FG, and
thus have a line differing from π by less than a millionth of a unit.

Circle squarers who thought they had discovered an exact value
for π are legion, but none has excelled the English philosopher
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Figure 37. How to construct a straight line with a length that differs from π by
less than 0.0000003. (Artist: Harold Jacobs)

Thomas Hobbes in combining height of intellect with depth of
ignorance. Educated Englishmen were not taught mathematics in
Hobbes’s day, and it was not until he was 40 years of age that he
looked into Euclid. When he read a statement of the Pythagorean
theorem, he first exclaimed: “By God, this is impossible!” Then he
threaded his way backward through the proof until he became con-
vinced. For the rest of his long life Hobbes pursued geometry with
all the ardor of a man in love. “Geometry hath in it something like
wine,” he later wrote, and it is said that he was accustomed, when
better surfaces were wanting, to drawing geometrical figures on his
thighs and bedsheets.

Had Hobbes been content to remain an amateur mathematician,
his later years would have been more tranquil, but his monstrous
egotism led him to think himself capable of great mathematical dis-
coveries. In 1655, at the age of 67, he published in Latin a book titled
De corpore (Concerning Body) that included an ingenious method
of squaring the circle. The method was an excellent approximation,
but Hobbes believed that it was exact. John Wallis, a distinguished
English mathematician and cryptographer, exposed Hobbes’s errors
in a pamphlet, and thus began one of the longest, funniest, and
most profitless verbal duels ever to engage two brilliant minds.
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It lasted almost a quarter of a century, each man writing with skillful
sarcasm and barbed invective. Wallis kept it up partly for his own
amusement, but mainly because it was a way of making Hobbes
appear ridiculous and thus casting doubt on his religious and polit-
ical opinions, which Wallis detested.

Hobbes responded to Wallis’ first attack by reprinting his book
in English with an addition called Six Lessons to the Professors of
Mathematics. . . . (I trust the reader will forgive me if I shorten the
endless seventeenth-century titles.) Wallis replied with Due Correc-
tion for Mr. Hobbes in School Discipline for not saying his Lessons
right. Hobbes countered with Marks of the Absurd Geometry, Rural
Language, Scottish Church Politics, and Barbarisms of John Wallis;
Wallis fired back with Hobbiani Puncti Dispunctio! or the Undoing
of Mr. Hobbes’s Points. Several pamphlets later (meanwhile Hobbes
had anonymously published in Paris an absurd method of duplicat-
ing the cube), Hobbes wrote this: “I alone am mad, or they [the pro-
fessors of mathematics] are all out of their senses: so that no third
opinion can be taken, unless any will say that we are all mad.”

“It needs no refutation,” was Wallis’ answer. “For if he be mad, he
is not likely to be convinced by reason; on the other hand, if we be
mad, we are in no position to attempt it.”

The battle continued, with momentary periods of cease-fire,
until Hobbes’ death at the age of 91. “Mr. Hobbes has been always
far from provoking any man,” Hobbes wrote in one of his last attacks
on Wallis [as a matter of fact, in social relations Hobbes was exces-
sively timid], “though, when he is provoked, you find his pen as
sharp as yours. All you have said is error and railing; that is, stink-
ing wind, such as a jade lets fly when he is too hard girt upon
a full belly. I have done. I have considered you now, but will not
again.”

This is not the place to go into details about Hobbes’ curious
“incapacity,” as Wallis phrased it, “to be taught what he doth not
know.” Altogether, Hobbes published about a dozen different meth-
ods of squaring the circle (an example of one book is given in Fig-
ure 38). His first method, and one of his best, is shown in Figure 39.
Inside a unit square, draw arcs AC and BD. These are quarter arcs of
circles with unit radii. Bisect arc BF at Q. Draw line RQ parallel with
the side of the square and extend it so QS equals RQ. Draw line FS,
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Figure 38. Title page of one of Hobbes’ books that contains a method of circle
squaring.

extending it until it meets the side of square at T. Hobbes asserted
that BT is exactly equal to arc BF. Because arc BF is 1/12 the circum-
ference of a circle with unit radius, π will be six times the length of
BT. This gives π a value of 3.1419+.

One of the philosopher’s major difficulties was his inability to
believe that points, lines, and surfaces could be regarded in the
abstract as having fewer than three dimensions. “He seems to have
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Figure 39. Hobbes’s first method of squaring the circle. (Artist: Harold Jacobs)

gone down to the grave,” writes Isaac Disraeli in his Quarrels of
Authors, “in spite of all the reasonings of the geometricians on this
side of it, with a firm conviction that its superficies had both depth
and thickness.” Hobbes presents a classic case of a man of genius
who ventures into a branch of science for which he is ill prepared
and dissipates his great energies on pseudoscientific nonsense.

Although the circle cannot be squared, figures bounded by cir-
cular arcs often can be; this fact still arouses false hopes in many
a circle squarer. An interesting example is shown in Figure 40. The
lower part of this vase is three-fourths of the circumference of a cir-
cle with a diameter of, say, 10 inches. The upper half is bounded
by three quarter-arcs of a circle the same size. How quickly can the
reader give, down to the last decimal, the exact length of the side of
a square that has the same area as this figure?

Close cousins to the circle squarers have been the π computers,
that is, people who devoted years to computing by hand the deci-
mals of π beyond all previous computations. This can be done, of
course, by using any infinite expression that converges on π . Wallis
himself discovered one of the simplest:

π = 2
(

2
1

× 2
3

× 4
3

× 4
5

× 6
5

× 6
7

× 8
7

× 8
9

× · · ·
)

The upper terms of these fractions are even numbers in
sequence, taken in pairs. (Note the fortuitous resemblance of the
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10

Figure 40. How many square units does this figure contain? (Artist: Harold
Jacobs)

first five lower terms to the digits in the Chinese astronomer’s
fraction!) A few decades later the German philosopher Gottfried
Wilhelm von Leibniz found another beautiful formula:

π = 4
(

1
1

− 1
3

+ 1
5

− 1
7

+ 1
9

− · · ·
)

The most indefatigable of π computers was the English math-
ematician William Shanks. Over a 20-year period he managed to
calculate π to 707 decimals. Alas, poor Shanks made an error on
his 528th decimal, and all the rest are wrong. (This was not discov-
ered until 1945, so Shanks’ 707 decimals are still found in many cur-
rent books.) In 1949 the electronic computer ENIAC was used for
70 machine hours to calculate π to more than 2,000 decimals; later
another computer carried it to more than 3,000 decimals in 13 min-
utes. By 1959, a computer in England and another in France had
computed π to 10,000 decimal places.

One of the strangest aspects of Shanks’ 707 decimals was the fact
that they seemed to snub the number 7. Each digit appeared about
70 times in the first 700 decimals, just as it should, except 7, which
appeared a mere 51 times. “If the cyclometers and the apocalyptics
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would lay their heads together,” wrote De Morgan, “until they came
to a unanimous verdict on this phenomenon, and would publish
nothing until they are of one mind, they would earn the gratitude
of their race.” I hasten to add that the corrected value of π to 700
places restored the missing 7’s. The intuitionist school of mathemat-
ics, which maintains that you cannot say of a statement that it is
“either true or false” unless there is a known way by which it can be
both verified and refuted, has always used this as its stock example:
“There are three consecutive 7’s in π .” This must now be changed
to five 7’s. The new figures for π show not only the expected num-
ber of triplets for each digit but also several runs of 7777 (and one
unexpected 999999).

So far π has passed all statistical tests for randomness. This is
disconcerting to those who feel that a curve so simple and beau-
tiful as the circle should have a less-disheveled ratio between the
way around and the way across, but most mathematicians believe
that no pattern or order of any sort will ever be found in π ’s decimal
expansion. Of course the digits are not random in the sense that they
represent π , but then in this sense neither are the million random
digits that have been published by the Rand Corporation of Califor-
nia. They too represent a single number, and an integer at that.

If it is true that the digits in π are random, perhaps we are justified
in stating a paradox somewhat similar to the assertion that if a group
of monkeys pound long enough on typewriters, they will eventu-
ally type all the plays of Shakespeare. Stephen Barr has pointed out
that if you set no limit to the accuracy with which two bars can be
constructed and measured, then those two bars, without any mark-
ings on them, can communicate the entire Encyclopaedia Britan-
nica. One bar is taken as unity. The other differs from unity by a
fraction that is expressed as a very long decimal. This decimal codes
the Britannica by the simple process of assigning a different number
(excluding zero as a digit in the number) to every word and mark of
punctuation in the language. Zero is used to separate the code num-
bers. Obviously the entire Britannica can now be coded as a single,
but almost inconceivably long, number. Put a decimal point in front
of this number, add 11, and you have the length of the second of
Barr’s bars.
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Where does π come in? Well, if the digits in π are really ran-
dom, then somewhere in this infinite pie there should be a slice that
contains the Britannica; or, for that matter, any book that has been
written, will be written, or could be written.

ADDENDUM

On July 29, 1961, a year after the preceding chapter appeared in
Scientific American, π was carried to 100,265 decimal places by an
IBM 7090 system at the IBM Data Center in New York. The work
was done by Daniel Shanks (no relation to William Shanks; just
another of those strange numerological coincidences that dog the
history of π) and John W. Wrench, Jr. The running time was 1 minute
more than 8 hours; then an additional 42 minutes were required
to get the binary results into decimal form. Computing π to a few
thousand decimals is now a popular device for testing a new com-
puter or training new programmers. “The mysterious and wonder-
ful π ,” writes Philip J. Davis (in his book The Lore of Large Numbers),
“is reduced to a gargle that helps computing machines clear their
throats.”

It will probably not be long until π is known to a million decimals.
In anticipation of this, Dr. Matrix, the famous numerologist, has sent
me a letter asking that I put on record his prediction that the mil-
lionth digit of π will be found to be 5. His calculation is based on the
third book of the King James Bible, Chapter 14, verse 16 (it mentions
the number 7, and the seventh word has five letters), combined with
some obscure calculations involving Euler’s constant and the tran-
scendental number e. (Dr. Matrix’s famous prediction appeared in
the 1966 first edition of this book. Note that he said the millionth
digit, not the millionth decimal digit. His prediction was confirmed
in 1973.)

March 14, which can be written 3/14, in some circles has been
called π day. It was Einstein’s birthday.

Norman Gridgeman, of Ottawa, wrote to point out that Barr’s
bars can be reduced to a single bar with a scratch on it. The
scratch divides the bar into two lengths, the ratio of which codes the
Britannica in the manner previously described.
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Figure 41. How to square the vase. (Artist: Alex Semeniock)

ANSWERS

It was suggested that the reader give the side of a square equal in
area to the vase-shaped figure in Figure 41, bounded by arcs of a
circle with a diameter of 10 inches. The answer is also 10 inches. If
we draw the broken squares shown in the illustration, it is obvious
that segments A, B, C will fit into spaces A′, B′, C′ to form two squares
with a combined area of 100 square inches. Figure 42 shows how the
vase can be “squared” by cutting it into as few as three parts that will
form a 10-inch square.
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10″

10 ″

Figure 42. Three-piece vase-to-square. (Artist: Alex Semeniock)

POSTSCRIPT

If inside a circle a line
Hits the center and goes spine to spine,
And the line’s length is d,
The circumference will be
d times 3.14159.

– Anonymous

In 1989 Yasumasa Kanada, at the University of Tokyo, broke
the one billion barrier by calculating π to 1,073,740,000 decimal
places. This held the record until 1991 when two Russian immigrant
computer scientists at Columbia University, David and Gregory
Chudnovsky, calculated π to 2,260,821,336 decimal places.

The brothers used a very rapid algorithm based on the discovery
by Ramanujan that e to the power of π times the square root of 163 is
incredibly close to an integer. (See Chapter 10 of Book 12.) Only inte-
gers are used. Each pass through the procedure adds 14 more digits
without having to start the entire computation over. Thus anyone
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with a desk computer can easily extend the string another 14 digits
as often as time permits.

Kanada said he did his calculating of π because “it is there.”
David Chudnovsky said he and his brother just wanted “to see more
of the tail of the dragon.”

An entertaining portrait of the two Russian brothers appeared
in The New Yorker (March 2, 1992) titled “The Mountains of Pi,” by
Richard Preston. The Chudnovskys used a supercomputer they built
in their apartment from mail-order parts. So far, no patterns in π

have turned up. Said David, “We need a trillion digits.”
For a collection of curiosities and coincidences involving π , see

“Slicing Pi into Millions,” in Gardner’s Whys and Wherefores.
Lewis Carroll planned to write a book titled Plain Facts for Circle

Squarers, but he never got around to it. In the Introduction to his
New Theory of Parallels he makes a comment that can be appreci-
ated by all mathematicians who have ever been pestered by angle-
trisecting and circle-squaring cranks:

The first of these two misguided visionaries filled me with a great
ambition to do a feat I have never heard of as accomplished by man,
namely to convince a circle squarer of his error! The value my friend
selected for π was 3.2: the enormous error tempted me with the idea
that it could be easily demonstrated to be an error. More than a score
of letters were interchanged before I became sadly convinced that I
had no chance.

In 2002 Kanada and his associates calculated π to 1,241 tril-
lion decimal digits! It took 600 computer hours. They used the fol-
lowing formula, discovered in 1995, which converges with extreme
rapidity.

π =
∞∑

k=0

1
16k

[
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

]

The formula generates π in binary notation, which is then trans-
lated to decimal notation.

Many such formulas, known as BBP formulas after the initials of
the three men who found the one given here, are now known. They



The Transcendental Number π 103

allow determining the nth digit of π without calculating any previ-
ous digit!

Starting with π ’s 17,387,594,880th digit is the run 0123456789! Of
course any specified run, no matter how long, presumably “sleeps”
somewhere in π , e, and other irrationals.

In Chapter 10 of my Science: Good, Bad, and Bogus, I discuss
“Buffon’s needle,” a strange way of calculating the digits of π by
dropping a needle of length k on parallel lines separated by dis-
tance k. The probability that the needle will cross a line is 2/π . For
an enlightening analysis of Buffon’s needle, and curious generaliza-
tions involving dropped squares and other polygonal shapes on par-
allel lines, see Chapter 7 of Nonplussed! by Julian Havil (Princeton
University Press, 2007). Havil also discusses the fudged results of
an Italian mathematician, Lazzarini, who claimed to have tossed a
needle more than 3,000 times to obtain π to six decimals! The odds
against such accuracy are a million to one!

I mentioned earlier the mysterious fact that, if two numbers are
picked at random from the set of positive integers, the probability
that they will have no common divisor is 6/π2= 0.608. . . . Clifford
Pickover, in The Möbius Strip (Avalon, 2006), notes that this number,
and its reciprocal, turn up in many surprising areas of mathematics
that have nothing to do with circles. For example, 6/π2 also mea-
sures the probability that a randomly chosen integer is square free –
that is, not divisible by a square. Furthermore, its reciprocal π2/6 is
the sum of the reciprocals of the squares of the positive integers!

Note that 666/212 (and note that both numbers are palindromes)
gives π to five digits.

In 2006 Akira Haraguchi, of Tokyo, recited π to 100,000 decimals
places from memory! It took him 16 hours.

In 2n dimensions, the volume of a unit sphere is πn/n! It follows
that the sum of the volumes of all unit spheres in spaces of even
dimensions is πe. This reminds me of a quatrain I once concocted:

Pi goes on and on and on,
And e is just as cursed.
I wonder, how do they begin
When their digits are reversed?
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CHAPTER NINE

Victor Eigen: Mathemagician

Luzhin had no difficulty in learning several card tricks . . . He
found a mysterious pleasure, a vague promise of still unfathomed
delights, in the crafty and accurate way a trick would come out . . .

– Vladimir Nabokov, The Defense

an increasing number of mathematically inclined amateur conjur-
ers have lately been turning their attention toward “mathemagic”:
tricks that rely heavily on mathematical principles. Professional
magicians shy away from such tricks because they are too cerebral
and boring for most audiences, but as parlor stunts presented more
in the spirit of puzzles than of feats of magic, they can be interesting
and entertaining. My friend Victor Eigen, an electronics engineer
and past president of the Brotherhood of American Wand Wielders,
manages to keep posted on the latest developments in this curious
field, and it was in the hope of finding some offbeat material for this
department that I paid him a visit.

The front door was opened by Victor – a plump, gray-haired man
in his mid-fifties with humorous creases around his eyes. “Do you
mind sitting in the kitchen?” he asked as he led me toward the back
of his apartment. “My wife’s absorbed in a television program and I
think we’d best not disturb her until it’s over. How do you want your
bourbon?”

We sat on opposite sides of the kitchen table and clinked glasses.
“To mathemagic,” I said. “What’s new?”

Victor lost no time in taking a deck of cards from his shirt pocket.
“The latest thing out in cards is the Gilbreath principle. It’s a whim-
sical theorem discovered by Norman Gilbreath, a young California
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magician.” As he talked, his short fingers skillfully arranged the deck
so that red and black cards alternated throughout. “You know, I’m
sure, that riffle shuffling is notoriously inefficient as a method of
randomizing.”

“No, I didn’t realize that.”
Victor’s eyebrows went up. “Well, this ought to convince you.

Please give the deck one thorough riffle shuffle.”
I cut the deck into two parts and shuffled them together.
“Take a look at the faces,” he said. “You’ll see that the alternating

color arrangement has been pretty well destroyed.”
“Of course.”
“Now give the deck a cut,” he went on, “but cut between two

cards of the same color. Square up the pack and hand it to me face
down.”

I did as he suggested. He held the deck under the table where it
was out of sight for both of us. “I’m going to try to distinguish the col-
ors by sense of touch,” he said, “and bring out the cards in red–black
pairs.” Sure enough, the first pair he tossed on the table consisted of
one red and one black card. The second pair likewise. He produced
a dozen such pairs.

“But how . . . ?”
Victor interrupted with a laugh. He slapped the rest of the deck on

the table and started taking cards from the top, two at a time, tossing
them face up. Each pair contained a red and a black card. “Couldn’t
be simpler,” he explained. “The shuffle and cut – remember, the cut
must be between two cards of the same color – destroys the alter-
nation of red and black all right, but it leaves the cards strongly
ordered. Each pair still contains both colors.”

“I can’t believe it!”
“Well, think about it a bit and you’ll see why it works, but it’s not

so easy to state a proof in a few words. By the way, my friend Edgar
N. Gilbert, of Bell Telephone Laboratories, included an interesting
puzzle along similar lines in a recent unpublished paper of his on
card shuffling and information theory. Here, I’ve jotted it down for
you.”

He handed me a sheet on which this was printed:

T L V E H E D I N S A G M E L R L I E N A T G O V R A R G I A N E S T Y
O F O F I F F O S H H R A V E M E V S O
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“That’s a garbled sentence,” he said, “from a Scientific American
article of five years ago. Gilbert wrote each letter on a card, then
arranged the deck so it spelled the sentence from top down. He cut
the cards into two piles, riffled them together, then copied down
the new sequence of letters. It takes, he tells me, the average per-
son about half an hour to unscramble them. The point is that one
riffle shuffle is such a poor destroyer of information conveyed by
the original sequence of cards, and the redundancy of various letter
combinations in English is so high, that it’s extremely unlikely – in
fact, Gilbert computes the exact probability in his paper – that the
message one finds is different from the correct one.”

I rattled the ice cubes in my glass.
“Before we refill,” Victor said, “let me show you an ingenious

experiment in precognition. We’ll need your glass and nine playing
cards.” He arranged nine cards, with values from one to nine, on the
table in the form of the familiar three-by-three magic square (see
Figure 43). The cards were all hearts, except for the five of spades in
the center. He took an envelope from his pocket and placed it beside
the square.

“I want you to put your glass on any one of the nine cards,” he
said, “but first let me explain that in this envelope is a file card on
which I have jotted down some instructions. The instructions are
based on my guesses as to the card you’re going to choose, and how
you are going to move the glass at random from card to card. If my
guesses are correct, your glass will end on the card in the center.” He
tapped his finger on the five of spades. “Now put your glass on any
card, including the center one if you wish.”

I placed my glass on the two of hearts.
“Just as I expected,” he chuckled. He took the file card from the

envelope and held it so I could read the following instructions:

1. Take away the seven.
2. Move seven times and take away the eight.
3. Move four times, take away the two.
4. Move six times, take away the four.
5. Move five times, take the nine.
6. Move twice, take the three.
7. Move once, take the six.
8. Move seven times, take the ace.
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Figure 43. Cards and a glass arranged for a demonstration of precognition.
(Artist: Alex Semenoick)

A “move,” he explained, consists of transferring the glass to an
adjacent card above, below, or on either side, but not diagonally. I
followed the instructions carefully, making all moves as random as
I could. To my vast surprise the glass never rested on a card that
I was asked to remove, and after eight cards had been taken away,
there was my glass, resting on the five of spades just as Victor had
predicted!

“You’ve befuddled me completely,” I admitted. “Suppose I had
originally placed my glass on the seven of hearts, the first card
removed?”

“I must confess,” he said, “that a bit of nonmathematical chi-
canery is involved. The magic-square arrangement has nothing to
do with the trick. Only the positions of the cards matter. Those in
the odd positions – the four corners and the center – form one set;
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those in the even positions form a set of opposite parity. When I saw
that you first placed your glass on a card in the odd set, I showed you
the instructions you see here. If you had placed your glass on a card
in the even set, I would have turned over the envelope before I took
out the file card.”

He flipped over the card. On its back was a second set of instruc-
tions. They read as follows:

1. Take away the six.
2. Move four times and take away the two.
3. Move seven times, take away the ace.
4. Move three times, take away the four.
5. Move once, take the seven.
6. Move twice, take the nine.
7. Move five times, take the eight.
8. Move three times, take the three.

“You mean that these two sets of instructions – one to use if I start
on an even-positioned card, and the other if I start on an odd – will
always guide the glass to the center?”

Victor nodded. “Why don’t you print both sides of the card in
your department and let your readers figure out why the trick has
to work?”

After refilling our glasses, Victor said: “Quite a number of ESP-
type tricks exploit a parity principle. Here’s one that seems to require
clairvoyance.” He handed me a blank sheet of paper and a pencil.
“While my back is turned, I want you to draw a complicated closed
curve that crosses itself at least a dozen times, but never more than
once at any one point.” He turned his chair so that he faced the wall
while I drew the curve (see Figure 44).

“Label each intersection with a different letter,” he said over his
shoulder.

I did as I was told.
“Now put your pencil on any spot along the curve and start trac-

ing it. Each time you come to a crossing, call out the letter. Keep this
up until you’ve traced the entire curve, but at some point along the
way – it doesn’t matter where – switch two letters as you call them.
The two letters must be adjacent along the path. Don’t tell me when
you switch them.”
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Figure 44. Randomly drawn and labeled closed curve for an experiment in clair-
voyance. (Artist: Alex Semenoick)

I started at point N, moved up to P, and continued along the
curve, calling out the letters as I came to them. I could see that Victor
was jotting them down on a pad. When I approached B for the sec-
ond time, I saw that the letter after it was F, so I called out F and then
B. I made the switch without a break in the timing of my calls, so that
Victor would have no clue as to which pair had been switched.
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A B

Figure 45. How soda crackers are held for the trick of the transposed arrows.
(Artist: Alex Semenoick)

As soon as I finished he said: “You switched B and F.”
“Amazing!” I said. “How did you know?”
Victor chuckled and turned back to face me. “The trick’s based

on a topological theorem that’s important in knot theory,’” he said.
“You’ll find it neatly proved in Hans Rademacher and Otto Toeplitz’s
book The Enjoyment of Mathematics.” He tossed over the pad on
which he had jotted down the letters. They were printed alternately
above and below a horizontal line like this:

N S G Q I R T K D M L F C F H O V P U J A E
P I B H L S C U E R G Q K B T J A O D N M V

“If no switch is made,” he explained, “then every letter must
appear once above and once below the line. All I have to do is look
for a letter that appears twice above, and a letter that appears twice
below. Those will be the two letters that are exchanged.”

“Beautiful!” I said.
Victor opened a box of soda crackers, took out two, and placed

them on the table, one to his right and one to his left. On both crack-
ers he drew an arrow pointing north (see Figure 45). He held the
cracker on the left between his thumb and middle finger as shown,
then with the tip of his right forefinger he pressed down on corner A
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to turn the cracker over. It rotated on the diagonal axis between the
two corners that were held. He drew on the cracker another arrow
that also pointed north.

Next, he held the cracker on his right in similar fashion, with his
right hand, and rotated it by pushing with his left forefinger on cor-
ner B. This time, however, instead of drawing an arrow that pointed
north, he drew one that pointed south.

“Now we’re all set,” he said, smiling, “for an amusing stunt involv-
ing the symmetry rotations, of a square. You’ll note that on the left I
have a cracker with a north arrow on both sides.” He picked up the
cracker with his left hand and rotated it several times to show that on
both sides the arrow pointed north. “And on my right we have north
and south arrows.” He picked up the cracker with his right hand and
rotated it rapidly several times to show that the two arrows pointed
in opposite directions.

Victor returned the cracker to the table. Then, slowly and with-
out altering their orientation, he switched the positions of the two
crackers. “Please rotate them yourself,” he requested. “I want you to
verify the fact that the cracker with the two north arrows is now on
my right, and the other cracker on my left.”

He handed me each cracker and I rotated it in exactly the same
way he had done, one in my right hand and one in my left. Yes, the
crackers had been exchanged.

Victor placed the crackers in front of him, then snapped his fin-
gers and commanded the crackers to return invisibly to their former
positions. He rotated the cracker on his left. I was startled to see that
the arrows now pointed north on both sides! And when he rotated
the other cracker, its arrows jumped back and forth from north to
south!

“Try it,” Victor said. “You’ll find that it works automatically. Actu-
ally, both crackers are exactly alike. The difference in appearance
depends entirely on which hand is holding them. When you ask your
spectator to check on the crackers, be sure he takes the cracker on
your right in his left hand, and the cracker on your left in his right
hand. And see that he puts down the north–south cracker so the
arrow on the top side points north.”

I drained my glass. There was just enough left in the bottle for one
more highball. The kitchen wobbled slightly.
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“Now let me show you one,” I said, taking another cracker from
the box. “It’s a test of probability. I’ll toss this cracker into the air. If it
falls rough side up, you get the rest of the bourbon. If it falls smooth
side up, you get the rest of the bourbon. If it falls with neither side
up” (I held the cracker perpendicular to the table but made no com-
ment about it), “then I get the last drink.”

Victor looked wary. “Okay,” he said.
I squeezed the cracker in my fist and tossed the crumbs into

the air.
Dead silence. Even the refrigerator stopped humming. “I observe

that most of both sides came down on your head,” Victor said at last,
unsmiling. “And I must say it’s a pretty crumby trick to play on an old
friend.”

ADDENDUM

The Gilbreath principle and its use in the trick described were first
explained by Norman Gilbreath in an article, “Magnetic Colors,” in
a magic periodical called The Linking Ring, Vol. 38, No. 5, July 1958,
page 60. Since then, dozens of clever card tricks have been based
on the simple principle. For those with access to magic journals,
here are a few references: Linking Ring, Vol. 38, No. 11, January 1958,
pages 54–58 (the tricks are by Charles Hudson and Ed Marlo); Link-
ing Ring, Vol. 39, No. 3, May 1959, pages 65–71 (the tricks are by
Charles Hudson, George Lord, and Ron Edwards); Ibidem (a Cana-
dian magic periodical), No. 16, March 1959 (the trick is by Tom Ran-
som); Ibidem, No. 26, September 1962 (the trick is by Tom Ransom);
and Ibidem, No. 31, December 1965 (the trick is by Allan Slaight).

The principle can be proved informally as follows. When the deck
is cut for a riffle shuffle, there are two possible situations: The bot-
tom cards of the two halves are either the same color or different.
Assume they are different. After the first card falls, the bottom cards
of the two halves will then be the same color, and opposite to that
of the card that fell. It makes no difference, therefore, whether the
next card slips past the left or right thumb; in either case, a card of
opposite color must fall on the previous one. This places on the table
a pair of cards that do not match. The situation is now exactly as
before. The bottom cards of the halves in the hands do not match.
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Whichever card falls, the remaining bottom cards will both have the
opposite color, and so on. The argument repeats for each pair until
the deck is exhausted.

Now suppose that the deck is initially cut so that the two bot-
tom cards are the same color. Either card may fall first. The previous
argument now applies to all the pairs of cards that follow. One last
card will remain. It must, of course, be opposite in color to the first
card that fell. When the deck is cut between two cards of the same
color (that is, between the ordered pairs), the top and bottom cards
of the deck are brought together, and all pairs are now intact.

Another simple way to present the Gilbreath trick is to prepare
the deck by reversing every other card. Someone gives the deck a
thorough riffle shuffle. If top and bottom cards are facing different
ways, cut the deck so they face the same way. You now can hold the
deck under a table or behind your back and bring out pairs of cards,
each with cards facing opposite ways.

In recent years, hundreds of clever card tricks based on the
Gilbreath principle have been published in the vast literature of card
magic. For generalizations of the principle, see Chapter 7 of Book 7.

In other books that follow this one in the Cambridge series, you
will find many self-working card tricks based on mathematical prin-
ciples. See especially Chapter 14, “Mathematical Magic Tricks,” in
Book 5.

There are many different ways of presenting the trick with the
cards and the glass. Ron Edwards, of Rochester, New York, writes
that he has nine cards selected at random and formed into a square.
The spectator then places a miniature skull on one of the cards.
There is a hole in the top of the skull into which Edwards places a
rolled slip of paper on which he has written his prediction: the name
of the center card. The proper instruction card is then taken from his
pocket (the two cards are in different pockets). The instructions des-
ignate the positions (rather than names) of the cards to be removed
at each step.

After this trick appeared in Scientific American, Hal Newton,
of Rochester, New York, worked out a version called “Voice from
Another World” in which a phonograph record is played to give
instructions to a spectator as he moves an object back and forth on
nine cards that bear the names of the nine planets. The record can,
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of course, be played on either side. The trick was put on the market
in 1962 by Gene Gordon’s magic shop in Buffalo.

For a version of this trick using a dime and eight pennies on a
nine-cell matrix bearing the names of planets, see Chapter 6 of my
Riddles of the Sphinx (1987).

ANSWERS

The card-shuffled sentence deciphers as follows: “The smelling
organs of fish have evolved in a great variety of forms.” It is the first
sentence of the last paragraph on page 73 of the article “The Hom-
ing Salmon,” by Arthur D. Hasler and James A. Larsen, in Scientific
American for August 1955.

POSTSCRIPT

Andy Liu at the University of Alberta, Canada, sent a neat proof
of the theorem about the closed, self-intersecting curve. It begins
by treating the curve as a map and two-coloring it. The proof
by Rademacher and Toeplitz was crisply summarized by W. C.
Waterhouse in the American Mathematical Monthly (February 1961,
p. 179) as follows:

We want to show that between successive passages through a given
double point an even number of double points are passed through.
Call the part of the curve traced (itself a closed curve) B, and the rest
of the curve (also a closed curve) C. All double points of B are cer-
tainly passed through twice, and we need consider only the inter-
sections of B and C. But C can be replaced by a regular curve with-
out changing its intersections with B, and then the Jordan Curve
Theorem shows that there are an even number of intersections of
B with C.

As the editor commented, the theorem plays an important role in
knot theory.

Many other versions of my nine-card parity trick have appeared
in magic periodicals since I first explained it, or sold in conjuring
shops with special equipment. In 1990 David Copperfield presented
a clever version on one of his television spectaculars. An account of
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his handling can be found in Sidney Kolpas’ article, “David Copper-
field’s Oriental Express Trick,” in the Mathematics Teacher (October
1991, pp. 568–570). I have brief accounts of other versions in Mar-
tin Gardner Presents (Richard Kaufman and Alan Greenberg, 1993,
pp. 149–153), a book sold in magic shops.
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CHAPTER TEN

The Four-Color Map Theorem

Hues
Are what mathematicians use
(While hungry patches gobble ‘em)
For the 4-color problem.

A Clerihew by
J. A. Lindon, Surrey, England

of all the great unproved conjectures of mathematics, the sim-
plest – simple in the sense that a small child can understand it –
is the famous four-color theorem of topology. How many colors are
needed for coloring any map so that no two countries with a com-
mon border will have the same color? It is easy to construct maps
that require four colors, and only a knowledge of elementary math-
ematics is required to follow a rigorous proof that five colors are suf-
ficient. But are four colors both necessary and sufficient? To put it
another way, is it possible to construct a map that will require five
colors? Mathematicians who are interested in the matter think not,
but they are not sure.

Every few months I receive in the mail a lengthy “proof” of the
four-color theorem. In almost every case it turns out that the sender
has confused the theorem with a much simpler one that states that
it is impossible to draw a map of five regions in such a way that
each region is adjacent to the other four. (Two regions that meet
at a single point are not considered adjacent.) I myself contributed
in a small way to this confusion by once writing a science-fiction
story entitled “The Island of Five Colors,” about an imaginary island
divided by a Polish topologist into five regions that all had common
borders. It is not difficult to prove that a map of this sort cannot be

118
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Figure 46. In making a map with four colors it is often necessary to start over
again with different colors. (Artist: Harold Jacobs)

drawn. One might suppose that the four-color theorem for all maps
would now follow automatically, but such is not the case.

To see why this is so, consider the simple map shown in Fig-
ure 46a. (The actual shapes of the regions do not matter; only the
manner in which they are connected is significant. The four-color
theorem is topological precisely because it deals with a property of
plane figures that is unaltered by distorting the surface on which
they are inscribed.) What color shall we use for the blank region?
Obviously we must color it either red or a fourth color. Suppose
we take the second alternative and color it green as shown in Fig-
ure 46b. Then we add another region. It is now impossible to com-
plete the map without using a fifth color. Let us go back, then, to
Figure 46a, and instead of putting green for the blank region, use
blue. However, this gets us into difficulty if two more regions touch
the first four, as shown in Figure 46c. Clearly, fourth and fifth colors
are necessary for the two blank areas. Does all this prove that five
colors are necessary for some maps? Not at all. In both cases we can
manage with four colors, but only by going back and altering the
previous color scheme.

In coloring complicated maps, with dozens of regions, we find
ourselves constantly running into blind alleys of this sort that
require a retracing of steps. To prove the four-color theorem, there-
fore, one must show that in all cases such alterations can always
be made successfully, or devise a procedure that will eliminate all
such alterations in the process of coloring any map with four col-
ors. Stephen Barr has suggested a delightful two-person topological



120 Sphere Packing, Lewis Carroll, and Reversi

game that is based on the difficulty of foreseeing these color cul-
de-sacs. Player A draws a region. Player B colors it and adds a new
region. Player A colors the new region and adds a third. This con-
tinues, with each player coloring the last region drawn by his oppo-
nent, until a player loses the game by being forced to use a fifth color.
I know of no quicker way to recognize the difficulties involved in
proving the four-color theorem than to engage in this curious game.

It is often said that cartographers were the first to realize that no
more than four colors are required for any map, but this has been
questioned by Kenneth O. May, a mathematician at Carleton Col-
lege. After extensive research on the origin of the four-color theo-
rem, May failed to find any statement of the theorem in early books
on cartography, or any indication that the theorem was recognized.
It seems to have been first formulated explicitly by Francis Guthrie, a
student at Edinburgh. He mentioned it to his brother Frederick (who
later became a chemist), and Frederick in turn passed it on, in 1852,
to his mathematics teacher, Augustus De Morgan. The conjecture
became well known after the great Arthur Cayley admitted in 1878
that he had worked on the theorem but had been unable to prove it.

In 1879 the British lawyer and mathematician Sir Alfred Kempe
published what he believed to be a proof, and a year later he con-
tributed to the British journal Nature an article with the overconfi-
dent title “How to Colour a Map with Four Colours.” For 10 years,
mathematicians thought the problem had been disposed of; then
P. J. Heawood spotted a fatal flaw in Kempe’s proof. Since that time
the finest minds in mathematics have grappled unsuccessfully with
the problem. The tantalizing thing about the theorem is that it looks
as though it should be quite easy to prove. In his autobiographical
book, Ex-Prodigy, Norbert Wiener writes that he has tried, like all
mathematicians, to find a proof of the four-color theorem, only to
find his proof crumble, as he expresses it, to fool’s gold in his hands.
As matters now stand, the theorem has been established for all maps
with no more than 38 regions. This may seem like a small number,
but it becomes less trivial when we realize that the number of topo-
logically different maps with 38 or fewer regions would run to more
than 1038. Even a modern electronic computer would not be able to
examine all these configurations in a reasonable length of time.

The lack of proof for the four-color theorem is made even more
exasperating by the fact that analogous proofs have been found for
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Figure 47. Seven colors make a map on a torus (c). The sheet (a) is first rolled
into a cylinder (b). The resulting torus is enlarged. (Artist: Harold Jacobs)

surfaces much more complicated than the plane. (The surface of a
sphere, by the way, is the same as a plane so far as this problem goes;
any map on the sphere can be transformed to an equivalent plane
map by puncturing the map inside any region and then flattening
the surface.) On one-sided surfaces such as the Möbius strip, the
Klein bottle, and the projective plane, it has been established that
six colors are necessary and sufficient. On the surface of the torus, or
anchor ring, the number is seven. Such a map is shown in Figure 47.
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Note that each region is bounded by six line segments and that every
region is adjacent to the other six. In fact, the map-coloring prob-
lem has been solved for every higher surface that has been seriously
investigated.

It is only when the theorem is applied to surfaces topologically
equivalent to a plane or surface of a sphere that its proof continues
to frustrate topologists; what is worse still, there is no apparent rea-
son why this should be so. There is something spooky about the way
in which attempted proofs seem to be working out beautifully, only
to develop an infuriating gap just as the deductive chain is about to
be completed. No one can predict what the future will decide about
this famous problem, but we can be sure that world fame awaits the
first person who achieves one of three possible breakthroughs:

1. A map requiring five colors will be discovered. “If I be so bold
as to make a conjecture,” writes H. S. M. Coxeter in his excel-
lent article “The Four-Color Map Problem, 1840–1890,” “I
would guess that a map requiring five colors may be possible,
but that the simplest such map has so many faces (maybe
hundreds or thousands) that nobody, confronted with it,
would have the patience to make all the necessary tests that
would be required to exclude the possibility of coloring it
with four colors.”

2. A proof of the theorem will be found, possibly by a new tech-
nique that may suddenly unlock many another bolted door
of mathematics.

3. The theorem will be proved impossible to prove. This may
sound strange, but in 1931 Kurt Gödel established that in
every deductive system complicated enough to include
arithmetic, there are mathematical theorems that are “un-
decidable” within the system. So far very few of the great
unsolved conjectures of mathematics have been shown to be
undecidable in this sense. Is the four-color theorem such a
theorem? If so, it can be accepted as “true” only by adopting
it, or some other undecidable theorem closely linked to it,
as a new and unprovable postulate of an enlarged deductive
system.

Unfortunately the proof that five colors are sufficient for plane
maps, or that six or more colors are necessary and sufficient for
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Figure 48. Two colors suffice for any map drawn with lines that cut across the
entire surface. (Artist: Alex Semenoick)

certain higher surfaces, is too lengthy to include here. But perhaps
the following clever proof of a two-color theorem will give the reader
some notion of how one can go about establishing a map-coloring
theorem.

Consider all possible maps on the plane that can be formed by
straight lines. The ordinary checkerboard is a familiar example. A
less regular pattern is shown in the left illustration of Figure 48. Are
two colors sufficient for all such maps? The answer is yes, and it is
easily shown. If we add another straight line (e.g., the heavy black
line in the same illustration) to any properly colored straight-line
map, the line will divide the plane into two separate maps, each cor-
rectly colored when considered in isolation, but with pairs of like-
color regions adjacent along the line. To restore a proper coloration
to the entire map, all we have to do is exchange the two colors on
one side (it doesn’t matter which) of the line. This is shown in the
right illustration. The map above the black line has been reversed,
as though a negative print had been changed to a positive, and, as
you can see, the new map is now properly colored.

To complete the proof, consider a plane that is divided into two
regions by a single line. It can, of course, be constructed with two
colors. We draw a second line and recolor the new map by revers-
ing the colors on one side of the line. We draw a third line, and so
on. Clearly this procedure will work for any number of lines, so by
a method known as “mathematical induction” we have established
a two-color theorem for all possible maps drawn with straight lines.
The proof can be generalized to cover less rigid maps, such as the
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Figure 49. Two colors also suffice for a map drawn with lines that either cut
across or form closed curves. (Artist: Alex Semenoick)

one in Figure 49, which are drawn with endless lines that either cut
across the entire map or lie on it as simple closed curves. If we add
a line that crosses the map, we reverse the colors on one side of the
line as before. If the new line is a closed curve, we reverse the colors
of all regions inside the curve or, if we prefer, the colors of regions
outside the curve. The closed curves may also intersect themselves,
but then the recoloring procedure becomes more complicated.

Note that all the two-color maps shown here have even vertices;
that is, at each vertex an even number of lines meet. It can be proved
that any map on the plane can be colored with two colors if and
only if all its vertices are even. This is known as the “two-color map
theorem.” That it does not hold on the torus is easily seen by ruling
a square sheet of paper into nine smaller squares (like a ticktacktoe
field) and rolling it into a torus in the manner previously described.
This checked doughnut has even vertices but requires three colors.

Now, more for amusement than for enlightenment, here are three
map-coloring problems that are not difficult, although each has a
“catch” element of some sort that makes the solution not quite what
one would at first expect.

1. How many colors are required for the map in Figure 50
(devised by the English puzzlist Henry Ernest Dudeney) so
that no two regions of the same color border on each other?
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Figure 50. How many colors are needed for this map? (Artist: Alex Semenoick)

2. Stephen Barr writes about the painter who wished to com-
plete on a huge canvas the nonobjective work of art shown
in outline in Figure 51. He decided to limit himself to four
colors, and to fill each region with one solid color in such
a way that there would be a different color on each side of
every common border. Each region had an area of 8 square

Figure 51. How many are needed for this abstraction? (Artist: Alex Semenoick)
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feet, except for the top region, which was twice the size of
the others. When he checked his paint supplies, he found
that he had on hand only the following: enough red to cover
24 square feet, enough yellow to cover the same area, enough
green to cover 16 square feet, and enough blue to paint 8
square feet. How did he manage to complete his canvas?

3. Leo Moser, a mathematician at the University of Alberta, asks
this: How can a two-color map be drawn on a plane so that
no matter where you place on it an equilateral triangle with
a side of 1, all three vertices never lie on points of the same
color?

ADDENDUM

The assertion that five regions cannot be drawn on the plane so that
every pair has a common border was made by Möbius in an 1840
lecture. He gave it in the form of a story about an Eastern prince who
willed his kingdom to five sons on the condition that it be divided
into five regions, each bordering the others. The problem is equiva-
lent to the following problem in graph theory: Is it possible to place
five spots on the plane and join each to the others by straight lines
that do not intersect? Proofs of impossibility are not difficult and
can be found in any book on elementary graph theory. An easy-to-
follow proof is given by Heinrich Tietze in his chapter “On Neighbor-
ing Domains” in Famous Problems of Mathematics. Essentially the
same proof is sketched by Henry Dudeney in his solution to Problem
140 in Mathematical Puzzles. Dudeney goes on to argue, mistakenly,
that this implies a proof of the four-color theorem.

The looseness of my language in speaking of the four-color theo-
rem as “Gödel-undecidable” prompted the following letter from the
British cosmologist Dennis Sciama (Scientific American, November
1960, p. 21):

Sirs:
I have been enjoying Martin Gardner’s article on the four-color

problem. Actually it is impossible to prove that it is impossible to
prove the theorem. For if the theorem is false, this can undoubtedly
be shown explicitly by exhibiting a map that cannot be colored with
four colors. Hence if the theorem is unprovable it must be true. This
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means that we cannot prove it to be unprovable, for this is tanta-
mount to proving it to be true, which is a contradiction.

The same remark holds for any theorem whose falsity could be
demonstrated by a gegenbeispiel; e.g., Fermat’s last theorem. Such
theorems may be unprovable, but only if they are true. We can then
never know that they are unprovable, so that mathematicians would
endlessly try to prove them. This is a terrifying state of affairs. Doing
physics might seem to be a good alternative, but Gödelry may invade
that realm yet. . . .

These worries have now been laid to rest. In 1976 Wolfgang
Haken and Kenneth Appel, at the University of Illinois, proved the
four-color theorem. Their proof required a computer program that
ran for 1,200 hours. Someone may someday find a simple, elegant
way to prove the theorem, or it may be that there is no simpler way.
It is possible that a subtle flaw may be concealed in the Haken–
Appel proof, but so many top mathematicians have examined it and
pronounced it valid that this seems extremely unlikely. For more on
map coloring, see my Scientific American column for February 1980.

ANSWERS

The answers to the three map-coloring problems follow (the first
two answers refer to illustrations that accompanied the problems).

1. The swastika map (Figure 50) could be colored with two colors
were it not for one small line at the lower left corner. At this spot
three regions touch one another, so three colors are required.

2. The artist colored his abstraction by mixing all his blue paint
with one-third of his red paint to obtain enough purple to color
16 square feet of canvas. After the large region at the top of the
canvas and the area in the center are painted yellow, it is a sim-
ple matter to color the remaining regions red, green, and purple.

3. To color the plane with two colors so that no three points
of the same color mark the corners of an equilateral trian-
gle with a side of 1, the simplest method is to divide the
plane into parallel stripes, each with a width of

√
3/2, then

color them alternately black and white as shown in Figure 52.
This does not solve the problem, however, until the concept of
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Figure 52. Solution to the problem of the triangle and the two-color map. (Artist:
Alex Semenoick)

open and closed sets is introduced. A continuum of real num-
bers – say from 0 to 1 – is called a closed interval if it includes 0
and 1, and an open interval if it excludes them. If it includes one
and not the other, it is said to be closed at one end and open at
the other.

√
3/2

The stripes on the map are closed along their left edge; open
along their right. The black stripe on the left has a width that
starts at 0, measured on the line below the map, and goes to√

3/2. It includes 0, but it does not include
√

3/2. The next stripe
has a width that includes

√
3/2 but does not include

√
3/2, and

so on for the other stripes. In other words, each vertical line
belongs only to the stripe on its right. This is necessary to take
care of cases in which the triangle, shown in color, lies with all
three of its corners on boundary lines.
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Figure 53. Leo Moser’s proof that four colors are necessary. (Artist: Harold
Jacobs)

Leo Moser, of the University of Alberta, who sent this prob-
lem, writes that it is not known how many colors are required for
coloring the plane so that no two points, a unit distance apart,
lie on the same color. Four colors have been shown necessary,
and seven sufficient. (That seven are sufficient is evident from
a regular tiling of hexagons, each with the radius of its circum-
scribing circle a trifle less than unity, and each surrounded by
hexagons that differ in color from it and from each other.) The
gap between four and seven is so large that the problem seems a
long way from being solved. Figure 53 is Moser’s lovely look-see
proof that four colors are necessary.
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CHAPTER ELEVEN

Mr. Apollinax Visits New York

When Mr. Apollinax visited the United States
His laughter tinkled among the teacups.

– T. S. Eliot

p. bertrand apollinax, the brilliant protégé of the celebrated
French mathematician Nicolas Bourbaki, was little known even in
France until the spring of 1960. It was then, as everyone knows, that
the mathematical world was shattered by the disclosure, in a French
mathematical journal, of what is now known as the Apollinax func-
tion. By means of this remarkable function, Apollinax was able at
one stroke to (1) prove Fermat’s last theorem, (2) provide a coun-
terexample (a map with 5,693 regions) to the famous four-color the-
orem of topology, and (3) lay the groundwork for Channing Chee-
tah’s discovery, 3 months later, of a 5,693-digit integer – the first of
its kind known – that is both perfect and odd.

The reader will understand my excitement when Professor Chee-
tah, of New York University, invited me to his apartment for an after-
noon tea at which Apollinax would be guest of honor. (Cheetah’s
apartment is in Greenwich Village, in a large brownstone building
off Fifth Avenue. The building is owned by Mrs. Orville Phlaccus,
widow of the well-known financier, and is called Phlaccus Palace by
students at nearby N.Y.U.) When I arrived, the tea was in full swing.
I recognized several members of the N.Y.U. mathematics faculty
and guessed that most of the younger people present were graduate
students.

There was no mistaking Apollinax. He was the obvious center of
attention: a bachelor in his early thirties, tall, with rugged features

132
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Figure 54. The mystery of the disappearing tile. (Artist: Alex Semenoick)

that could not be called handsome but nevertheless conveyed a
strong impression of physical virility combined with massive intel-
lect. He had a small black goatee and rather large ears with promi-
nent Darwin points. Under his tweedy jacket he sported a bright red
vest.

While Mrs. Phlaccus served me a cup of tea, I heard a young
woman say, “That silver ring on your finger, Mr. Apollinax. Isn’t it
a Möbius strip?”

He removed the ring and handed it to her. “Yes. It was made by
an artist friend of mine who has a jewelry shop on the Left Bank in
Paris.” He spoke with a husky French accent.

“It’s crazy,” the girl said as she handed back the ring. “Aren’t you
afraid it will twist around and your finger will disappear?”

Apollinax chuckled explosively. “If you think that’s crazy, then I
have something here you’ll think even crazier.” He reached into his
side pocket and took out a square, flat wooden box. It was filled with
17 white plastic tiles that fitted snugly together (see Figure 54, left).
The tiles were of such thickness that the five small pieces in the cen-
ter were cubes. Apollinax called attention to the number of cubes,
dumped the tiles onto a nearby table, and then quickly replaced
them in the box in the manner shown in the illustration at right.
They fitted snugly as before, but now there were only four cubes.
One cube had completely vanished!

The young woman stared at the pattern with disbelief, then
at Apollinax, who was shaking with high-pitched laughter. “May I
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study this for a while?” she asked, taking the box from his hand. She
carried it off to a quiet corner of the room.

“Who’s the chick?” Apollinax said to Cheetah.
“I beg your pardon?” replied the professor.
“The girl in the sweat shirt.”
“Oh. Her name is Nancy Ellicott. A Boston girl. She’s one of our

undergraduate math majors.”
“Very attractive.”
“You think so? I’ve never seen her wear anything but dungarees

and that same dirty sweat shirt.”
“I like your Village nonconformists,” Apollinax said. “They’re all

so much alike.”
“Sometimes,” remarked someone in the group, “it’s hard to dis-

tinguish nonconformity from neurosis.”
“That reminds me,” I said, “of a mathematical riddle I just heard.

What’s the difference between a psychotic and a neurotic?”
Nobody said anything.
“A psychotic,” I went on, “thinks that two plus two is five. A neu-

rotic knows that it’s four, but it makes him nervous.”
There was some polite laughter, but Apollinax looked grave. “He

has good reason to be nervous. Wasn’t it Alexander Pope who wrote:
‘Ah why, ye gods! should two and two make four?’ Why indeed? Who
can say why tautologies are tautological? And who can say that even
simple arithmetic is free from contradiction?” He took a small note-
book from his pocket and jotted down the following infinite series:

4 − 4 + 4 − 4 + 4 − 4 + 4 . . .

“What,” he asked, “is the sum of this series? If we group the num-
bers like this,

(4 − 4) + (4 − 4) + (4 − 4) . . .

the sum is obviously zero. But if we group them so,

4 − (4 − 4) − (4 − 4) − (4 − 4) . . .

the sum is clearly four. Suppose we try them still another way:

4 − (4 − 4 + 4 − 4 + 4 − 4 . . .)
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Now the sum of the series is four minus the sum of the same
series. In other words, twice the sum is equal to four, so the sum
must be equal to half of four, or two.”

I started to make a comment, but Nancy pushed her way back
through the group and said: “These tiles are driving me batty. What
happened to that fifth cube?”

Apollinax laughed until his eyes teared. “I’ll give you a hint, my
dear. Perhaps it slid off into a higher dimension.”

“Are you pulling my leg?”
“I wish I were,” he sighed. “The fourth dimension, as you know, is

an extension along a fourth coordinate perpendicular to the three
coordinates of three-dimensional space. Now consider a cube. It
has four main diagonals, each running from one corner through the
cube’s center to the opposite corner. Because of the cube’s symme-
try, each diagonal is clearly at right angles to the other three. So why
shouldn’t a cube, if it feels like it, slide along a fourth coordinate?”

“But my physics teacher,” Nancy said with a frown, “told us that
time was the fourth dimension.”

“Nonsense!” Apollinax snorted. “General relativity is as dead as
the dodo. Hasn’t your professor heard about Hilbert Dongle’s recent
discovery of a fatal flaw in Einstein’s theory?”

“I doubt it,” Nancy replied.
“It’s easy to explain. If you spin a sphere of soft rubber rapidly,

what happens to its equator? It bulges. In relativity theory, you can
explain the bulge in two different ways. You can assume that the cos-
mos is a fixed frame of reference – a so-called inertial system. Then
you say that the sphere rotates and inertia makes the equator bulge.
Or you can make the sphere a fixed frame of reference and regard the
entire cosmos as rotating. Then you say that the masses of the mov-
ing stars set up a gravitational tensor field that exerts its strongest
pull on the equator of the motionless ball. Of course–”

“I would put it a bit differently,” Cheetah interrupted. “I would
say that there is a relative movement of sphere and stars, and this
relative motion causes a certain change in the space-time structure
of the universe. It is the pressure, so to speak, of this space-time
matrix that produces the bulge. The bulge can be viewed either as
a gravitational or inertial effect. In both cases the field equations are
exactly the same.”
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“Very good,” Apollinax replied. “Of course, this is exactly what
Einstein called the principle of equivalence – the equivalence of
gravity and inertia. As Hans Reichenbach liked to put it, there’s no
truth distinction between the two. But now let me ask you this: Does
not relativity theory make it impossible for physical bodies to have
relative motions greater than the speed of light? Yet if we make the
rubber ball our fixed frame of reference, it takes only a slow spin
of the ball to give the moon a relative motion much faster than the
speed of light.”

Cheetah did a slow double-take.
“You see,” Apollinax continued, “we just can’t keep the sphere

still while we spin the universe around it. This means that we have
to regard the ball’s spin as absolute, not relative. Astronomers run
into the same sort of difficulty with what they call the transverse
Doppler effect. If the earth rotates, the relative transverse velocity
between the observatory and a ray of light from a distant star is very
small, so the Doppler shift is small. But if you view the cosmos as
rotating, then the transverse velocity of the distant star relative to
the observatory is very great, and the Doppler shift would have to
increase accordingly. Since the transverse Doppler shift is small, we
must assume it is the earth that rotates. Of course, this defenestrates
relativity theory.”

“Then,” Cheetah mumbled, looking a trifle pale, “how do you
account for the fact that the Michelson-Morley experiment failed to
detect any motion of the earth relative to a fixed space?”

“Quite simple,” Apollinax said. “The universe is infinite. The
earth spins around the sun, the sun speeds through the galaxy, the
galaxy gallumphs along relative to other galaxies, the galaxies are in
galactic clusters that move relative to other clusters, and the clusters
are parts of superclusters. The hierarchy is endless. Add together an
infinite series of vectors, of random speeds and directions, and what
happens? They cancel each other out. Zero and infinity are close
cousins. Let me illustrate.”

He pointed to a large vase on the table. “Imagine that vase empty.
We start filling it with numbers. If you like, you can think of small
counters with numbers on them. At one minute to noon we put
the numbers 1 through 10 into the vase, then take out number 1. At
one-half minute to noon, we put in numbers 11 to 20 and take out
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number 2. At one-third minute to noon we put in 21 to 30, take out
3. At one-fourth minute noon we put in 31 to 40, take out 4. And so
on. How many numbers are in the vase at noon?”

“An infinity,” said Nancy. “Each time you take one out, you put in
ten.”

Apollinax cackled like an irresponsible hen. “There would be
nothing in the vase! Is 4 in the vase? No, we took it out on the fourth
operation. Is 518 in the vase? No, it came out on the 1,318th opera-
tion. The numbers in the vase at noon form an empty set. You see
how close infinity is to zero?”

Mrs. Cheetah approached us, bearing a tray with assorted cook-
ies and macaroons. “I think I shall exercise Zermelo’s axiom of choice,”
said Apollinax, tugging on his goatee, “and take one of each kind.”

“If you think relativity theory is dead,” I said a few minutes later,
“what is your attitude toward modern quantum theory? Do you
think there’s a fundamental randomness in the behavior of the ele-
mentary particles? Or is the randomness just an expression of our
ignorance of underlying laws?”

“I accept the modern approach,” he said. “In fact, I go much fur-
ther. I agree with Karl Popper that there are logical reasons why
determinism can no longer be taken seriously.”

“That’s hard to believe,” someone said.
“Well, let me put it this way. There are portions of the future that

in principle can never be predicted correctly, even if one possessed
total information about the state of the universe. Let me demon-
strate.”

He took a blank file card from his pocket; then, holding it so no
one could see what he was writing, he scribbled something on the
card and handed it to me, writing side down. “Put that in your right
trouser pocket.”

I did as he directed.
“On that card,” he said, “I’ve described a future event. It hasn’t

taken place yet, but it positively either will or will not take place
before” – he glanced at his wrist watch – “before six o’clock.”

He took another blank card from his pocket and handed it to me.
“I want you to try to guess whether the event I just described will
take place. If you think it will, write ‘Yes’ on the card you hold. If you
think it won’t, write ‘No.’”
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I started to write, but Apollinax caught my wrist. “Not yet, old
chap. If I see your prediction, I might do something to make it fail.
Wait until my back is turned, and don’t let anyone see what you
write.” He spun around and looked at the ceiling until I had finished
writing. “Now put the card in your left pocket, where no one can
see it.”

He turned to face me again. “I don’t know your prediction. You
don’t know what the event is. Your chance of being right is one in
two.”

I nodded.
“Then I’ll make you the following bet. If your prediction is wrong,

you must give me ten cents. If it’s right, I’ll give you one million dol-
lars.”

Everyone looked startled. “It’s a deal,” I said.
“While we’re waiting,” Apollinax said to Nancy, “let’s go back to

relativity theory. Would you care to know how you can always wear
a relatively clean sweat shirt, even if you own only two sweat shirts
and never wash either of them?”

“I’m all ears,” she said, smiling.
“You have other features,” he said, “and very pretty ones too. But

let me explain about those sweat shirts. Wear the cleanest one, say
sweat shirt A, until it becomes dirtier than B. Then take it off and put
on the relatively clean sweat shirt B. The instant B is dirtier than A,
take off B and put on the relatively clean sweat shirt A. And so on.”

Nancy made a face.
“I really can’t wait here until six,” Apollinax said. “Not on a warm

spring evening in Manhattan. Would you by any chance know if
Thelonious Monk is playing anywhere in the city tonight?”

Nancy’s eyes opened wide. “Why, yes, he’s playing right here in
the Village. Do you like his style?”

“I dig it,” Apollinax said. “And now, if you’ll kindly direct me to a
nearby restaurant, where I shall pay for your dinner, we will eat, I will
explain the mystery of the tiles, then we will go listen to the Monk.”

After Apollinax had left, with Nancy on his arm, word of the
prediction bet spread rapidly around the room. When six o’clock
arrived, everyone gathered around to see what Apollinax and I had
written. He was right. The event was logically unpredictable. I owed
him a dime.
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The reader may enjoy trying to figure out just what future event
Apollinax described on that card.

ADDENDUM

Many readers took Apollinax seriously (even though I said he was
a protégé of Bourbaki, the well-known, nonexistent French math-
ematician) and wrote to ask where they could find out about the
“Apollinax function.” Both Apollinax and Nancy, as well as others
at the tea, are straight out of T. S. Eliot’s two poems, “Mr. Apolli-
nax” and “Nancy,” which appear on facing pages in Eliot’s Collected
Poems: 1909–1962 (Harcourt Brace, 1963).

“Mr. Apollinax,” by the way, is a poem about Bertrand Russell.
When Russell visited Harvard in 1914, Eliot attended his lectures
on logic, and the two met at a tea; this is the tea Eliot describes
in his poem. A mathematician at Trinity College, Cambridge, wrote
to ask me if the name “Phlaccus” was a portmanteau word com-
bining “flaccid” and “phallus”; I mention this as a minor contribu-
tion to Eliot exegesis. Hilbert Dongle derives from Herbert Dingle,
the British physicist who has been arguing in recent years that if
the clock paradox of relativity theory is true, then relativity isn’t.
(See my chapter on the clock paradox in Relativity for the Million,
now a Pocket Books paperback.) Thelonious Monk is Thelonious
Monk.

Apollinax’s reasoning about Nancy’s dirty sweat shirt is borrowed
from a small poem by Piet Hein, who is mentioned earlier in the
chapter on braids. The paradox about the numbers in the vase
comes from J. E. Littlewood’s A Mathematician’s Miscellany. It illus-
trates a case in which the subtraction of the transfinite number
aleph-null from 10 times aleph-null results in zero. If the numbered
counters are taken out of the vase in the order 2, 4, 6, 8, . . . , then
an aleph-null infinity remains, namely, all the odd numbers. One
can also remove an infinite set of counters in such a way as to leave
any desired finite number of counters. If one wishes to leave, say,
exactly three counters, he or she merely takes out numbers in serial
order, but beginning with 4. The situation is an amusing illustra-
tion of the fact that when aleph-null is taken from aleph-null, the
result is indeterminate; it can be made zero, infinity, or any desired
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positive integer, depending on the nature of the two infinite sets that
are involved.

The pattern for the vanishing-cube paradox is one that I based
on a little-known principle discovered by Paul Curry, of New York
City, and that is discussed at length in the chapters on “Geometrical
Vanishes” in my Dover paperback, Mathematics, Magic and Mystery.

My dramatization of the prediction paradox as a bar bet was first
published in Ibidem, a Canadian magic magazine, No. 23, March
1961, page 23. I contributed a slightly different version, involving a
card mailed to a friend, to The British Journal for the Philosophy of
Science, Vol. 13, May 1962, page 51.

ANSWERS

The paradox of the tiles, demonstrated by P. Bertrand Apollinax, is
explained as follows. When all 17 tiles are formed into a square,
the sides of the square are not absolutely straight but convex by
an imperceptible amount. When one cube is removed and the 16
tiles re-formed into a square, the sides of the square are concave
by the same imperceptible amount. This accounts for the apparent
change in area. To dramatize the paradox, Apollinax performed a bit
of sleight of hand by palming the fifth cube as he rearranged the pat-
tern of the tiles.

In his prediction bet, the event that Apollinax described on the
file card was this: “You will place in your left trouser pocket a card on
which you have written the word ‘No.’” The simplest presentation of
the same paradox is to ask someone to predict, by saying yes or no,
whether the next word that he utters will be no. Karl R. Popper’s rea-
sons for thinking that part of the future is in principle unpredictable
are not based on this paradox, which is simply a version of the old
liar paradox, but on much deeper considerations. These consider-
ations are given in Popper’s “Indeterminism in Quantum Physics
and in Classical Physics,” in The British Journal for the Philosophy of
Science, Vol. 1, Nos. 2 and 3, 1950, and will be discussed more fully
in his forthcoming book Postscript: After Twenty Years. A prediction
paradox essentially the same as Apollinax’s, except that it involves a
computer and electric fan instead of a person and card, is discussed
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in Chapter 11 of John G. Kemeny’s A Philosopher Looks at Science,
published by D. Van Nostrand in 1959.

The paradox of the infinite series of fours, alternately added and
subtracted, is explained by the fact that the sum of this series does
not converge but oscillates back and forth between the values of
zero and four. To explain the rotation paradoxes would require too
deep a plunge into relativity theory. For a stimulating presentation
of a modern approach to these classic difficulties, Dennis Sciama’s
recent book, The Unity of the Universe, published by Doubleday, is
recommended.

POSTSCRIPT

My vanishing-tile paradox was made in China and marketed here
in the early 1990s by Playtime Toys, Louisville, Kentucky, under the
title Puzzle Mania. No credit is given for its source.

A way of presenting the tile paradox as a magic trick appeared
in an article titled “Puzzle Routine,” by Lee Woodside, in the magic
periodical MUM, March 2005.



CHAPTER TWELVE

Nine Problems

1. THE GAME OF HIP

The game of “Hip,” so named because of the hipster’s reputed dis-
dain for “squares,” is played on a six-by-six checkerboard as follows.

One player holds 18 red counters; his opponent holds 18 black
counters. They take turns placing a single counter on any vacant cell
of the board. Each tries to avoid placing his counters so that four of
them mark the corners of a square. The square may be any size and
tipped at any angle. There are 105 possible squares, a few of which
are shown in Figure 55.

A player wins when his opponent becomes a “square” by forming
one of the 105 squares. The game can be played on a board with
actual counters, or with pencil and paper. Simply draw the board
and then register moves by marking X’s and O’s on the cells.

For months after I had devised this game I believed that it was
impossible for a draw to occur in it. Then C. M. McLaury, a math-
ematics student at the University of Oklahoma, demonstrated that
the game could end in a draw. The problem is to show how the game
can be drawn by dividing the 36 cells into two sets of 18 each so that
no four cells of the same set mark the corners of a square.

2. A SWITCHING PUZZLE

The efficient switching of railroad cars often poses frustrating prob-
lems in the field of operations research. The switching puzzle
depicted in Figure 56 is one that has the merit of combining sim-
plicity with surprising difficulty.

142
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Figure 55. Four of the 105 ways to become “square” in the game of Hip. (Artist:
Harold Jacobs)

The tunnel is wide enough to accommodate the locomotive but
not wide enough for either car. The problem is to use the locomotive
for switching the positions of cars A and B, then return the locomo-
tive to its original spot. Each end of the locomotive can be used for
pushing or pulling, and the two cars may, if desired, be coupled to
each other.

The best solution is the one requiring the fewest operations. An
“operation” is defined here as any movement of the locomotive

A

B

Figure 56. A puzzle in operations research. (Artist: Bunji Tagawa)
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between stops, assuming that it stops when it reverses direction,
meets a car to push it, or unhooks from a car it has been pulling.
Movements of the two switches are not counted as operations.

A convenient way to work on the puzzle is to place a penny,
a dime, and a nickel on the illustration and slide them along the
tracks, remembering that only the coin representing the locomotive
can pass through the tunnel. In the illustration, the cars were drawn
in positions too close to the switches. While working on the prob-
lem, assume that both cars are far enough east along the track so
that there is ample space between each car and switch to accom-
modate both the locomotive and the other car.

No “flying switch” maneuvers are permitted. For example, you
are not permitted to turn the switch quickly just after the engine has
pushed an unattached car past it, so that the car goes one way and
the engine, without stopping, goes another way.

3. BEER SIGNS ON THE HIGHWAY

Smith drove at a steady clip along the highway, his wife beside him.
“Have you noticed,” he said, “that those annoying signs for Flatz
beer seem to be regularly spaced along the road? I wonder how far
apart they are.”

Mrs. Smith glanced at her wristwatch, then counted the number
of Flatz beer signs they passed in 1 minute.

“What an odd coincidence!” exclaimed Smith. “When you multi-
ply that number by 10, it exactly equals the speed of our car in miles
per hour.”

Assuming that the car’s speed is constant, that the signs are
equally spaced and that Mrs. Smith’s minute began and ended with
the car midway between two signs, how far is it between one sign
and the next?

4. THE SLICED CUBE AND THE SLICED DOUGHNUT

An engineer, noted for his ability to visualize three-dimensional
structure, was having coffee and doughnuts. Before he dropped
a sugar cube into his cup, he placed the cube on the table and
thought: “If I pass a horizontal plane through the cube’s center, the
cross section will of course be a square. If I pass it vertically through
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Figure 57. The monad. Yin is dark and Yang is light. (Artist: Bunji Tagawa)

the center and four corners of the cube, the cross section will be
an oblong rectangle. Now suppose I cut the cube this way with the
plane. . . . ” To his surprise, his mental image of the cross section was
a regular hexagon.

How was the slice made? If the cube’s side is half an inch, what is
the side of the hexagon?

After dropping the cube into his coffee, the engineer turned his
attention to a doughnut lying flat on a plate. “If I pass a plane hor-
izontally through the center,” he said to himself, “the cross section
will be two concentric circles. If I pass the plane vertically through
the center, the section will be two circles separated by the width of
the hole. But if I turn the plane so. . . . ” He whistled with astonish-
ment. The section consisted of two perfect circles that intersected!

How was this slice made? If the doughnut is a perfect torus, 3
inches in outside diameter and with a hole 1 inch across, what are
the diameters of the intersecting circles?

5. BISECTING YIN AND YANG

Two mathematicians were dining at the Yin and Yang, a Chinese
restaurant on West Third Street in Manhattan. They chatted about
the yin-yang symbol on the restaurant’s menu (see Figure 57).

“I suppose it’s one of the world’s oldest religious symbols,” one
of them said. “It would be hard to find a more attractive way to
symbolize the great polarities of nature: good and evil, male and
female, inflation and deflation, integration and differentiation.”
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“Isn’t it also the symbol of the Northern Pacific Railway?”
“Yes. I understand that one of the chief engineers of the railroad

saw the emblem on a Korean flag at the Chicago World’s Fair in
1893 and urged his company to adopt it. He said it symbolized the
extremes of fire and water that drove the steam engine.”

“Do you suppose it inspired the construction of the modern base-
ball?”

“I wouldn’t be surprised. By the way, did you know that there is
an elegant method of drawing one straight line across the circle so
that it exactly bisects the areas of the Yin and Yang?”

Assuming that the Yin and Yang are separated by two semicircles,
show how each can be simultaneously bisected by the same straight
line.

6. THE BLUE-EYED SISTERS

If you happen to meet two of the Jones sisters (this assumes that the
two are random selections from the set of all the Jones sisters), it is
an exactly even-money bet that both girls have blue eyes. What is
your best guess as to the total number of blue-eyed Jones sisters?

7. HOW OLD IS THE ROSE-RED CITY?

Two professors, one of English and one of mathematics, were having
drinks in the faculty club bar.

“It is curious,” said the English professor, “how some poets can
write one immortal line and nothing else of lasting value. John
William Burgon, for example. His poems are so mediocre that no
one reads them now, yet he wrote one of the most marvelous lines
in English poetry: ‘A rose-red city half as old as Time.’”

The mathematician, who liked to annoy his friends with impro-
vised brainteasers, thought for a moment or two, then raised his
glass and recited this:

A rose-red city half as old as Time.
One billion years ago the city’s age
Was just two-fifths of what Time’s age will be
A billion years from now. Can you compute
How old the crimson city is today?
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The English professor had long ago forgotten his algebra, so he
quickly shifted the conversation to another topic, but readers of this
department should have no difficulty with the problem.

8. TRICKY TRACK

Three high schools – Washington, Lincoln, and Roosevelt – com-
peted in a track meet. Each school entered one man, and one only,
in each event. Susan, a student at Lincoln High, sat in the bleachers
to cheer her boy boyfriend, the school’s shot-put champion.

When Susan returned home later in the day, her father asked how
her school had gone.

“We won the shot put all right,” she said, “but Washington High
won the track meet. They had a final score of 22. We finished with 9.
So did Roosevelt High.”

“How were the events scored?” her father asked.
“I don’t remember exactly,” Susan replied, “but there was a cer-

tain number of points for the winner of each event, a smaller num-
ber for second place, and a still smaller number for third place.
The numbers were the same for all events.” (By “number” Susan of
course meant a positive integer.)

“How many events were there altogether?”
“Gosh, I don’t know, Dad. All I watched was the shot put.”
“Was there a high jump?” asked Susan’s brother.
Susan nodded.
“Who won it?”
Susan didn’t know.
Incredible as it may seem, this last question can be answered with

only the information given. Which school won the high jump?

9. TERMITE AND 27 CUBES

Imagine a large cube formed by gluing together 27 smaller wooden
cubes of uniform size (see Figure 58). A termite starts at the center of
the face of any one of the outside cubes and bores a path that takes
it once through every cube. Its movement is always parallel to a side
of the large cube, never diagonal.

Is it possible for the termite to bore through each of the 26 outside
cubes once and only once and then finish its trip by entering the
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Figure 58. The problem of the termite and the cube. (Artist: Bunji Tagawa)

central cube for the first time? If possible, show how it can be done;
if impossible, prove it.

It is assumed that the termite, once it has bored into a small cube,
follows a path entirely within the large cube. Otherwise, it could
crawl out on the surface of the large cube and move along the sur-
face to a new spot of entry. If this were permitted, there would, of
course, be no problem.

ANSWERS

1. Figure 59 shows the finish of a drawn game of Hip. This beauti-
ful, hard-to-find solution was first discovered by C. M. McLaury,
a mathematics student at the University of Oklahoma to whom I
had communicated the problem by way of Richard Andree, one
of his professors.

Two readers (William R. Jordan, Scotia, New York, and Don-
ald L. Vanderpool, Towanda, Pennsylvania) were able to show,
by an exhaustive enumeration of possibilities, that the solution
is unique except for slight variations in the four border cells
indicated by arrows. Each cell may be either color, provided all
four are not the same color, but because each player is lim-
ited in the game to 18 pieces, two of these cells must be one
color and two the other color. They are arranged here so that no
matter how the square is turned, the pattern is the same when
inverted.



Nine Problems 149

Figure 59. Answer to the problem of the drawn game of Hip. (Artist: Bunji
Tagawa)

The order-6 board is the largest on which a draw is possible.
This was proved in 1960 by Robert I. Jewett, then a graduate
student at the University of Oregon. He was able to show that a
draw is impossible on the order-7 board, regardless of whether
the pair of colors at the finish is 26–23 or 24–25. Because all
higher squares contain a 7 × 7 subsquare, draws are clearly
impossible on them also.

As a playable game, Hip on an order-6 board is strictly for the
squares. David H. Templeton, professor of chemistry at the Uni-
versity of California’s Lawrence Radiation Laboratory in Berke-
ley, pointed out that the second player can always force a draw
by playing a simple symmetry strategy. He can either make each
move so that it matches his opponent’s last move by reflec-
tion across a parallel bisector of the board, or by a 90-degree
rotation about the board’s center. (The latter strategy could lead
to the draw depicted.) An alternate strategy is to play in the
corresponding opposite cell on a line from the opponent’s last
move and across the center of the board. Second-player draw
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strategies were also sent by Allan W. Dickinson, Richmond
Heights, Missouri, and Michael Merritt, a student at Texas A. &
M. College. These strategies apply to all even-order fields, and
because no draws are possible on such fields higher than 6,
the strategy guarantees a win for the second player on all even-
order boards of 8 or higher. Even on the order-6 board, a reflec-
tion strategy across a parallel bisector is sure to win, because
the unique draw pattern does not have that type of sym-
metry.

Symmetry play fails on odd-order fields because of the central
cell. Because nothing is known about strategies on odd-order
boards, the order-7 board is the best field for actual play. It can-
not end in a draw, and no one at present knows whether the first
or second player wins if both sides play rationally.

In 1963 Walter W. Massie, a civil engineering student at
Worcester Polytechnic Institute, devised a Hip-playing program
for the IBM 1620 digital computer and wrote a term paper about
it. The program allows the computer to play first or second on
any square field of orders 4 through 10. The computer takes a
random cell if it moves first. On other plays, it follows a reflec-
tion strategy except when a reflected move forms a square; then
it makes random choices until it finds a safe cell.

On all square fields of order n, the number of different squares
that can be formed by four cells is (n4 − n2)/12. The deriva-
tion of this formula, as well as a formula for rectangular boards,
is given by Harry Langman in Play Mathematics, Hafner, 1962,
pages 36–37.

As far as I know, no studies have been made of comparable
“triangle-free” colorings on triangular lattice fields.

2. The locomotive can switch the positions of cars A and B, and
return to its former spot, in 16 operations:

1. The locomotive moves right and hooks to car A.
2. It pulls A to the bottom.
3. It pushes A to the left and unhooks.
4. It moves right.
5. It makes a clockwise circle through the tunnel.
6. It pushes B to the left. All three are hooked.
7. It pulls A and B to the right.



Nine Problems 151

8. It pushes A and B to the top. A is unhooked from B.
9. It pulls B to the bottom.

10. It pushes B to the left and unhooks.
11. It circles counterclockwise through the tunnel.
12. It pushes A to the bottom.
13. It moves left and hooks to B.
14. It pulls B to the right.
15. It pushes B to the top and unhooks.
16. It moves left to the original position.

This procedure will do the job even when the locomotive is
not permitted to pull with its front end, provided that at the start
the locomotive is placed with its back toward the cars.

Howard Grossman, New York City, and Moises V. Gonzalez,
Miami, Florida, each pointed out that if the lower siding is elim-
inated completely, the problem can still be solved, although two
additional moves are required, making 18 in all. Can the reader
discover how it is done?

3. The curious thing about the problem of the Flatz beer signs is
that it is not necessary to know the car’s speed to determine the
spacing of the signs. Let x be the number of signs passed in 1
minute. In an hour the car will pass 60x signs. The speed of the
car, we are told, is 10x miles per hour. In 10x miles it will pass
60x signs, so in 1 mile it will pass 60x/10x, or 6, signs. The signs
therefore are 1/6 mile, or 880 feet, apart.

4. A cube, cut in half by a plane that passes through the midpoints
of six sides as shown in Figure 60, produces a cross section that
is a regular hexagon. If the cube is 1/2 inch on the side, the side
of the hexagon is

√
2/4 inch.

To cut a torus so that the cross section consists of two inter-
secting circles, the plane must pass through the center and be
tangent to the torus above and below, as shown in Figure 61. If
the torus and hole have diameters of 3 inches and 1 inch, each
circle of the section will clearly have a diameter of 2 inches.

This way of slicing and the two ways described earlier are the
only ways to slice a doughnut so that the cross sections are cir-
cular. Everett A. Emerson, in the electronics division of National
Cash Register, Hawthorne, California, sent a full algebraic proof
that there is no fourth way.
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Figure 60. Answer to the cube-slicing problem. (Artist: Bunji Tagawa)

5. Figure 62 shows how to construct a straight line that bisects
both the Yin and the Yang. A simple proof is obtained by draw-
ing the two broken semicircles. Circle K’s diameter is half that of
the monad; therefore its area is one-fourth that of the monad.
Take region G from this circle, add H, and the resulting region is
also one-fourth the monad’s area. It follows that area G equals
area H, and of course half of G must equal half of H. The bisect-
ing line takes half of G away from circle K, but restores the same
area (half of H) to the circle, so the black area below the bisect-
ing line must have the same area as circle K. The small circle’s
area is one-fourth the large circle’s area; therefore the Yin is
bisected. The same argument applies to the Yang.

The foregoing proof was given by Henry Dudeney in his
answer to Problem 158, Amusements in Mathematics. After it
appeared in Scientific American, four readers (A. E. Decae, F. J.
Hooven, Charles W. Trigg, and B. H. K. Willoughby) sent the fol-
lowing alternative proof, which is much simpler. In Figure 62,
draw a horizontal diameter of the small circle K. The semicircle
below this line has an area that is clearly one eighth that of the
large circle. Above the diameter is a 45-degree sector of the large
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CUT

SIDE VIEW

TOP VIEW

Figure 61. Answer to the doughnut-slicing problem. (Artist: Bunji Tagawa)

circle (bounded by the small circle’s horizontal diameter and the
diagonal line) which also is obviously one-eighth the area of the
large circle. Together, the semicircle and sector have an area of
one-fourth that of the large circle; therefore, the diagonal line
must bisect both Yin and Yang. For ways of bisecting the Yin and
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Figure 62. Answer to the yin-yang problem. (Artist: Bunji Tagawa)

Yang with curved lines, the reader is referred to Dudeney’s prob-
lem, just cited, and Trigg’s article, “Bisection of Yin and of Yang,”
in Mathematics Magazine, Vol. 34, No. 2, November-December
1960, pages 107–108.

The yin-yang symbol (called the T’ai-chi-t’u in China and the
Tomoye in Japan) is usually drawn with a small spot of Yin inside
the Yang and a small spot of Yang inside the Yin. This symbol-
izes the fact that the great dualities of life are seldom pure; each
usually contains a bit of the other. There is an extensive Oriental
literature on the symbol. Sam Loyd, who bases several puzzles
on the figure (Sam Loyd’s Cyclopedia of Puzzles, Lamb Publish-
ing Co., p. 26), calls it the Great Monad. The term “monad” is
repeated by Dudeney, and it is also used by Olin D. Wheeler in
a booklet entitled Wonderland, published in 1901 by the North-
ern Pacific Railway. Wheeler’s first chapter is devoted to a his-
tory of the trademark, and it is filled with curious informa-
tion and color reproductions from Oriental sources. For more
on the symbol, see Schuyler Cammann, “The Magic Square of
Three in Old Chinese Philosophy and Religion,” History of Reli-
gions, Vol. 1, No. 1, Summer 1961, pages 37–80; my Ambidex-
trous Universe (Basic Books, 1965), pages 249–250; and George
Sarton, A History of Science, Vol. 1 (Harvard University Press,
1952), page 11. Carl Gustav Jung cites some English references
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on the symbol in his introduction to the book of I Ching (1929),
and there is a book called The Chinese Monad: Its History and
Meaning, by Wilhelm von Hohenzollern, published in Leipzig
in 1934.

6. There are probably three blue-eyed Jones sisters and four sisters
altogether. If there are n girls, of which b have blue eyes, then
the probability that two chosen at random have blue eyes is as
follows:

b(b − 1)
n(n − 1)

We are told that this probability is 1/2, so the problem is one
of finding integral values for b and n that will give the displayed-
above expression a value of 1/2. The smallest such values are
n = 4, b = 3. The next highest values are n = 21, b = 15, but it
is extremely unlikely that there would be as many as 21 sisters,
so four sisters, three of them blue-eyed individuals, is the best
guess.

7. The rose-red city’s age is seven billion years. Let x be the city’s
present age; y, the present age of Time. A billion years ago the
city would have been x − 1 billion years old and a billion years
from now Time’s age will be y + 1. The data in the problem per-
mit two simple equations:

2x = y

x − 1 = 2
5

(y + 1)

These equations give x, the city’s present age, a value of seven
billion years; and y, Time’s present age, a value of 14 billion
years. The problem presupposes a big bang theory of the cre-
ation of the cosmos.

8. There is space only to suggest the procedure by which it can
be shown that Washington High won the high jump event in
the track meet involving three schools. Three different posi-
tive integers provide points for first, second, and third place in
each event. The integer for first place must be at least 3. We
know there are at least two events in the track meet, and that
Lincoln High (which won the shot put) had a final score of 9, so
the integer for first place cannot be more than 8. Can it be 8?
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Figure 63. Answer to the track-meet problem. (Artist: Bunji Tagawa)

No, because then only two events could take place and there is
no way that Washington High could build up a total of 22 points.
It cannot be 7 because this permits no more than three events,
and three are still not sufficient to enable Washington High to
reach a score of 22. Slightly more involved arguments eliminate
6, 4, and 3 as the integer for first place. Only 5 remains as a pos-
sibility.

If 5 is the value for first place, there must be at least five events
in the meet. (Fewer events are not sufficient to give Washington
a total of 22, and more than five would raise Lincoln’s total to
more than 9.) Lincoln scored 5 for the shot put, so its four other
scores must be 1. Washington can now reach 22 in only two
ways: 4, 5, 5, 5, 3 or 2, 5, 5, 5, 5. The first is eliminated because
it gives Roosevelt a score of 17, and we know that this score is 9.
The remaining possibility gives Roosevelt a correct final tally, so
we have the unique reconstruction of the scoring shown in the
table (Figure 63).

Washington High won all events except the shot put; conse-
quently, it must have won the high jump.

Many readers sent shorter solutions than the one just given.
Two readers (Mrs. Erlys Jedlicka, Saratoga, California, and Albert
Zoch, a student at Illinois Institute of Technology) noticed that
there was a short cut to the solution based on the assumption
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that the problem had a unique answer. Mrs. Jedlicka put it this
way:

Dear Mr. Gardner:
Did you know this problem can be solved without any cal-

culation whatever? The necessary clue is in the last para-
graph. The solution to the integer equations must indicate
without ambiguity which school won the high jump. This can
only be done if one school has won all the events, not count-
ing the shot-put; otherwise the problem could not be solved
with the information given, even after calculating the scoring
and number of events. Since the school that won the shot-
put was not the over-all winner, it is obvious that the over-all
winner won the remaining events. Hence without calculation
it can be said that Washington High won the high jump.

9. It is not possible for the termite to pass once through the 26 out-
side cubes and end its journey in the center one. This is easily
demonstrated by imagining that the cubes alternate in color like
the cells of a three-dimensional checkerboard, or the sodium
and chlorine atoms in the cubical crystal lattice of ordinary salt.
The large cube will then consist of 13 cubes of one color and 14
of the other color. The termite’s path is always through cubes
that alternate in color along the way; therefore if the path is to
include all 27 cubes, it must begin and end with a cube belong-
ing to the set of 14. The central cube, however, belongs to the
13 set; hence the desired path is impossible.

The problem can be generalized as follows: A cube of even
order (an even number of cells on the side) has the same num-
ber of cells of one color as it has cells of the other color. There
is no central cube, but complete paths may start on any cell
and end on any cell of opposite color. A cube of odd order has
one more cell of one color than the other, so a complete path
must begin and end on the color that is used for the larger
set. In odd-order cubes of orders 3, 7, 11, 15, 19, and so on,
the central cell belongs to the smaller set, so it cannot be the
end of any complete path. In odd-order cubes of 1, 5, 9, 13, 17,
and so on, the central cell belongs to the larger set, so it can
be the end of any path that starts on a cell of the same color.
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Figure 64. Solutions to Knuth’s Hip puzzle. (Artist: Harold Jacobs)

No closed path, going through every unit cube, is possible on
any odd-order cube because of the extra cube of one color.

Many two-dimensional puzzles can be solved quickly by sim-
ilar “parity checks.” For example, it is not possible for a rook to
start at one corner of a chessboard and follow a path that car-
ries it once through every square and ends on the square at the
diagonally opposite corner.

POSTSCRIPT

Donald Knuth became interested in the unsolved problem of who
wins 7 × 7 Hip, or is it a draw if played rationally? He found that the
problem was much too hard for a computer, but in working on it he
came across the following delightful task. Can you place as few as 14
counters on the 6 × 6 board so that no square is formed, and if any
vacant cell is given a counter, it will complete a square? Knuth found
just four solutions, almost identical. They are shown in Figure 64.
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Many different train-switching puzzles can be found in the puz-
zle books by Sam Loyd, Ernest Dudeney, and others. Two recent arti-
cles deal with this type of puzzle: A. K. Dewdney’s Computer Recre-
ations column in Scientific American (June 1987), and “Reversing
Trains, A Turn of the Century Sorting Problem,” by Nancy Amato,
et al., Journal of Algorithms, Vol. 10, 1989, pages 413–428.



CHAPTER THIRTEEN

Polyominoes and Fault-Free Rectangles

polyominoes – the intriguing shapes that cover connected squares
on a checkerboard – were introduced to the mathematical world in
1954 by Solomon W. Golomb, now a professor of engineering and
mathematics at the University of Southern California. They were
first discussed in Scientific American in 1957. (See Book 1, Chapter
13.) Since then they have become an enormously popular math-
ematical recreation, and hundreds of new polyomino puzzles and
unusual configurations have come to light. The following commu-
nication from Golomb discusses some of these recent discoveries.

“The shapes that cover five connected squares,” Golomb writes,
“are called pentominoes. There are 12 such shapes. If they are
arranged [as shown in Figure 65], they resemble letters of the alpha-
bet, and these letters provide convenient names for the pieces. For
mnemonic purposes, one has only to remember the end of the
alphabet (TUVWXYZ) and the word FILiPiNo.”

“In previous articles it was shown that the 12 pentominoes,
which have a total of 60 squares, can form such patterns as a 3 × 20
rectangle, a 4 × 15 rectangle, a 5 × 12 rectangle, and a 6 × 10 rectan-
gle. They can all be fitted onto the 8 × 8 checkerboard, with the four
excess squares of the board forming a 2 × 2 square at any specified
location on the board. Given any pentomino, 9 of the others can be
used to triplicate it, that is, to form a scale model three times as long
and three times as high as the selected pentomino. It is also possible
to arrange the 12 pentominoes into two rectangles, each five by six.”

This last configuration is known as a superposition problem,
because it involves shapes that can be superposed. Golomb reports
on five new superposition problems, here published for the first

160
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Figure 65. (Artist: Alex Semenoick)

time. If readers have not yet discovered the fascination of playing
with pentominoes, they are urged to make a set of them from card-
board and try their skill on some of the puzzles that follow. In all
such puzzles, pieces may be placed with either side up.

1. Divide the 12 pentominoes into three groups of four each.
Find a 20-square shape that each of the three groups will
cover. One of several solutions is depicted in Figure 66.

2. Divide the 12 pentominoes into three groups of four each.
Subdivide each group into two pairs of shapes. For each
group find a 10-square region that each of the two pairs will
cover. One solution is shown in Figure 67. Can the reader find
other solutions, including one without holes?

Figure 66. (Artist: Alex Semenoick)
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Figure 67. (Artist: Alex Semenoick)

3. Divide the 12 pentominoes into three groups of four each. To
each group add a monomino (a single square), and form a
3 × 7 rectangle. Figure 68 shows the solution. It is known to
be unique except that in the first rectangle the monomino
and Y pentomino can be rearranged and can still occupy the
same region.

The uniqueness proof follows a suggestion by C. S. Lorens. To
begin with, in the pattern shown in Figure 69, the X pentomino can
be used only in conjunction with the U pentomino. Next, neither
the F nor the W pentomino can be used to complete this rectangle.
Furthermore, with the U pentomino needed to support the X, it is
impossible to use F and W in the same 3 × 7 rectangle. Hence, of the
three 3 × 7 rectangles, one will contain X and U, another will con-
tain W (but not U), and the third will contain F (but not U). When all
possible completions of these three rectangles are listed and com-
pared (a very time-consuming enterprise), it is found that the solu-
tion shown is the only possible one.

4. Divide the 12 pentominoes into four groups of three each.
Find a 15-square region that each of the four groups will

Figure 68. (Artist: Alex Semenoick)
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Figure 69. (Artist: Alex Semenoick)

cover. No solution to this problem is known; however, the
problem has not been proved impossible.

5. Find the smallest region on the checkerboard onto which
each of the 12 pentominoes, taken one at a time, will fit. The
minimum area for such a region is nine squares. There are
only two examples of such a region (Figure 70).

“The adequacy of each region,” Golomb writes, “is proved by
observing that each pentomino in turn will fit on it. The impossi-
bility of fewer than nine squares is proved as follows: If it were pos-
sible to use a region with fewer than nine squares, then in particular
the I, X, and V pentominoes would fit on a region of no more than
eight squares. The I and X pentominoes will then have three squares
in common. (Otherwise either nine squares are needed, or else the
longest straight line has six squares, which is a needless extrava-
gance.)” This can happen in only two distinct ways (Figure 71). In
either case, however, the fitting of the U pentomino would require
a ninth square. Thus eight squares are not enough, whereas nine
squares have been shown by example to be sufficient.

Recently the resources of modern electronic computing have
been turned loose on various pentomino problems. The chapter
on polyominoes in Book 1 contains a brief account of how Dana
S. Scott programmed the MANIAC computer at Princeton Univer-
sity for determining all the ways that 12 pentominoes can be fitted
onto the 8 × 8 checkerboard, leaving a 2 × 2 hole in the center. It

Figure 70. (Artist: Alex Semenoick)
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Figure 71. (Artist: Alex Semenoick)

was discovered that there are 65 basically different solutions in the
sense that two solutions differing only by rotation or reflection are
not regarded as distinct. More recently, C. B. Haselgrove, a mathe-
matician at the University of Manchester, programmed a computer
to find all possible ways to form a 6 × 10 rectangle with the 12 pen-
tominoes. Excluding rotations and reflections, he found 2,339 basi-
cally different solutions! He also verified Scott’s program for the 8 ×
8 checkerboard problem.

As Golomb notes, “several special pentomino configurations
make excellent puzzles.” Figure 72 shows a 64-square pyramid that
can be formed with the 12 pentominoes and the 2 × 2 square tetro-
mino. The cross in Figure 73 requires only the 12 pentominoes and
is unusually difficult. Still unsolved (neither constructed nor proved
impossible) is the pattern shown in Figure 74. Even if the monomino
hole is moved to another location, no solution has been found.
The closest approximation yet known is pictured in Figure 75. Also
believed impossible is Herbert Taylor’s configuration, shown in
Figure 76, though no one has yet found an impossibility proof.

Figure 72. (Artist: Alex Semenoick)
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Figure 73. (Artist: Alex Semenoick)

Figure 74. (Artist: Alex Semenoick)

Figure 75. (Artist: Alex Semenoick)
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Figure 76. (Artist: Alex Semenoick)

Fortunately, not all such problems are undecided. The pattern
shown in Figure 77, for example, was proved by R. M. Robinson, a
mathematician at the University of California, to be incapable of for-
mation by the 12 pentominoes. It has 22 edge squares that form its
border. If the pentominoes are examined separately, and the maxi-
mum number of edge squares that each could contribute to the pat-
tern are listed, the total proves to be 21, just one short of the required
number. This type of reasoning is used in working jigsaw puzzles. It
is common practice to separate the edge pieces from the interior
pieces so that the picture’s border can be made first.

“Polyominoes that cover four squares of the checkerboard,”
Golomb writes, “are called tetrominoes. Unlike the pentominoes,
the five distinct tetrominoes will not form a rectangle. To prove this,
color the squares of a 4 × 5 rectangle and a 2 × 10 rectangle (the

Figure 77. (Artist: Alex Semenoick)
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Figure 78. (Artist: Alex Semenoick)

only two rectangles with a 20-square area) in checkerboard fashion
[as shown in Figure 78]. Four of the five tetrominoes [Figure 79] will
always cover two dark and two light squares, but the T-shaped tetro-
mino always covers three squares of one color and one square of the
other color. Altogether, therefore, the five shapes will cover an odd
number of dark squares and an odd number of light squares. How-
ever, the two rectangles in question have 10 squares of each color,
and 10 is an even number.”

On the other hand, any of several different pentominoes can be
combined with the five tetrominoes to form a 5 × 5 square. Two
examples are shown in Figure 80. This raises an interesting ques-
tion: How many different pentominoes can be used in this manner?

Golomb notes that Robert I. Jewett, a graduate student in mathe-
matics at the University of Oregon (he was mentioned in the answer
to the first problem of the previous chapter), has proposed a prob-
lem involving dominoes (2-square polyominoes) that is quite differ-
ent from any of the problems just discussed. Is it possible to form
a rectangle with dominoes in such a way that there is no straight
line, vertical or horizontal, that joins opposite sides of the rectan-
gle? For example, in Figure 81 there is a vertical line in the center that
extends all the way from top to bottom. If dominoes are thought of
as bricks, such a line represents a structural weakness. Jewett’s prob-
lem is thus one of finding rectangular masonry patterns without
these so-called fault lines. Many people who try this problem soon
give up, convinced that there are no solutions. “Actually,” Golomb
writes, “there are infinitely many.”

Figure 79. (Artist: Alex Semenoick)
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Figure 80. (Artist: Alex Semenoick)

The reader is invited to make or obtain a set of dominoes – the
standard set of 28 dominoes is more than sufficient – and see if he
can determine the smallest possible fault-free rectangle that can be
made with them. The solution to this beautiful problem will be given
in the answer section, together with a remarkable proof, devised by
Golomb, that there are no fault-free 6 × 6 squares.

ADDENDUM

Since this chapter appeared in Scientific American, much progress
has been made in the study of polyominoes and fault-free rect-
angles. The interested reader is urged to look into Golomb’s book
Polyominoes, in which the field is thoroughly covered and many new
results given.

The Herbert Taylor configuration (Figure 76) and the jagged
square (Figure 74) have both been proved impossible, though no
short, elegant proofs have yet been found for either pattern. On
the Taylor configuration I received proofs from Ivan M. Anderson,
Leo J. Brandenburger, Bruce H. Douglas, Micky Earnshaw, John G.
Fletcher, Meredith G. Williams, and Donald L. Vanderpool. Impos-
sibility proofs for the jagged square came from Bruno Antonelli,

FAULT LINE

Figure 81. (Artist: Alex Semenoick)
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Leo J. Brandenburger, Cyril B. Carstairs, Bruce H. Douglas, Micky
Earnshaw, E. J. Mayland, Jr., and Robert Nelson.

J. A. Lindon, Surrey, England, found a solution of the jagged
square with the monomino (hole) on the border, adjacent to a cor-
ner (his solution appears in Golomb’s book on page 73 of the first
edition and page 42 of the second edition). Other readers found
solutions with the monomino at the corner. D. C. and B. G. Gunn,
of Sussex, England, sent 16 different patterns of this type. It is not
yet known if the monomino can be on the border and next to the
corner but one.

William E. Patton, a retired hydraulics engineer living in South
Boston, Virginia, wrote that he had been investigating fault-free
domino rectangles since 1944. He sent me summaries of some of
his results, many of them suggesting interesting problems. What, for
instance, is the smallest fault-free rectangle with the same number
of horizontal and vertical dominoes? The answer is the 5 × 8. Read-
ers may like to search for solutions.

The concept of the fault-free domino square suggests a variety of
games, none of which, as far as I know, have been investigated. For
example, players take turns placing dominoes on a square, checked
board. The winner is the first to complete a fault line, either verti-
cally or horizontally. Or the game can be played in reverse: The first
to complete a fault line loses.

ANSWERS

Answers to the pyramid and cross puzzles are depicted in Figures 82
and 83. Neither solution is unique. Readers were asked to determine
which individual pentominoes can be combined with the five tetro-
minoes to form a 5 × 5 square. This is possible with all pentominoes
except the I, T, X, and V.

The smallest fault-free rectangle (a rectangle with no straight line
joining opposite sides) that can be formed with dominoes is a 5 × 6.
The two basically different solutions are shown in Figure 84.

“It is not difficult to show,” writes Solomon W. Golomb, “that the
minimum width for fault-free rectangles must exceed 4.” (Cases of
width 2, 3, and 4 are best treated separately.) Therefore, because
5 × 5 is an odd number of squares, and dominoes always cover
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Figure 82. An answer to the pyramid puzzle. (Artist: Alex Semenoick)

Figure 83. An answer to the cross puzzle. (Artist: Alex Semenoick)

Figure 84. Answers to the fault-free rectangle puzzle. (Artist: Alex Semenoick)
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5 × 6 
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RECTANGLE 

Figure 85. A fault-free rectangle on an 8-by-8 board. (Artist: Alex Semenoick)

an even number of squares, the 5 × 6 rectangle is the smallest
solution.

As Golomb notes, “a 5 × 6 rectangle can be extended to an
8 × 8 checkerboard and still satisfy the fault-free condition.” An
example is shown in Figure 85. Surprisingly, there are no fault-free
6 × 6 rectangles. For this there is a truly remarkable proof.

“Imagine any 6 × 6 rectangle covered entirely with dominoes,”
Golomb writes. “Such a figure contains 18 dominoes (half the area)
and 10 grid lines (five horizontal and five vertical). It is fault-free if
each grid line intersects at least one domino.”

Golomb explains that the first step is to show that, in any fault-
free rectangle of even sides, each grid line must cut an even number
of dominoes. Consider any vertical grid line. The area to the left of
it (expressed in number of unit squares) is even (6, 12, 18, 24, or 30).
Dominoes entirely to the left of this grid line must cover an even area
because each domino covers two squares. Dominoes cut by the grid
line must also occupy an even area to the left of it, because this area
is the difference between two even numbers (the total area to the
left, and the area of the uncut dominoes to the left). Because each
cut domino occupies one square to the left of the grid line, there
must be an even number of dominoes cut by the grid line.

The 6 × 6 square has 10 grid lines. To be fault free, each line must
intersect at least two dominoes. No domino can be cut by more than
one grid line; therefore, at least 20 dominoes must be cut by grid
lines. But there are only 18 dominoes in a 6 × 6 square!
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Figure 86. A fault-free 6 × 8 rectangle. (Artist: Alex Semenoick)

Similar reasoning shows that for a fault-free 6 × 8 rectangle to
exist, every grid line must intersect exactly two dominoes. Such a
rectangle is shown in Figure 86.

As Golomb explains, “The most general result is the following: If a
rectangle has even area, and both its length and width exceed 4, it is
possible to find a fault-free covering of the rectangle with dominoes,
except in the case of the 6 × 6 square. Actually, coverings for all larger
rectangles can be obtained from the 5 × 6 rectangle and the 6 × 8,
using a method of enlarging either the length or width by 2.” This
method is easiest to explain by use of Figure 87. To extend it hori-
zontally by 2, a horizontal domino is placed next to each horizon-
tal domino at the old boundary, while vertical dominoes are shifted
from the old boundary to the new, with the intervening space filled
by two horizontal dominoes.

The reader may find it interesting to study trominoes as bricks.
In particular, what is the smallest rectangle that can be covered by
two or more “straight trominoes” (1 × 3 rectangles) without any fault
lines?

Figure 87. A general solution to the fault-free rectangle puzzle. (Artist: Alex
Semenoick)
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POSTSCRIPT

The literature on polyominoes has grown so huge since I first wrote
about these tantalizing shapes in 1959 that it is impossible to list
the hundreds of papers. Both editions of Solomon Golomb’s book
include extensive bibliographies. See also the references cited in
George Martin’s book.

The question I left open of whether the jagged square (Figure
74) can have a monomino on the border, third spot from a corner,
has been settled. The Journal of Recreational Mathematics (Vol. 24,
No. 1, 1992, p. 70) reported that a computer program by A. van de
Wetering, in the Netherlands, found all solutions. It produced the 10
published in the same journal (Vol. 23, No. 2, 1991, p. 146), none of
which had the monomino in the specified position.

Little work has been reported on generalizations to three dimen-
sions of fault-free problems. In The American Mathematical Month-
ly (Vol. 77, June/July 1970, p. 656), Jan Mycielski worded Problem
5774 as follows:

“A cube 20 × 20 × 20 is built out of bricks of the form 2 × 2 × 1.
The faces of the bricks are parallel to the faces of the cube but they
need not all lie flat. Prove that the cube can be pierced by a straight
line perpendicular to one of the faces that does not pierce any of the
bricks.”

A proof was given in Vol. 78, August/September, 1971, page 801.
For new results on fault-free rectangles, see the papers cited in the
Bibliography.

BIBLIOGRAPHY

“Polyominoes.” Martin Gardner in The Scientific American Book of
Mathematical Puzzles & Diversions, Chapter 13. Simon & Schuster,
1959.

Polyominoes. Solomon W. Golomb. Scribner’s, 1965. Second edition
printed by Princeton University Press, 1994. Bibliographies in the
back of both editions cover all important earlier references in books
and magazines.

“Regular Fault-free Rectangles.” M. D. Atkinson and W. F. Lunnon in
Mathematical Gazette 64 (June 1980): 99–106.



174 Sphere Packing, Lewis Carroll, and Reversi

“Fault-Free Tilings of Rectangles.” Ronald L. Graham in The Mathe-
matical Gardner, pp. 120–126, ed. David Klarner. Prindle, Weber &
Schmidt, 1981. Reprinted as Mathematical Recreations by Dover,
1998.

Polyominoes: A Guide to Puzzles and Problems in Tiling. George E.
Martin. The Mathematical Association of America, 1996. Fault-free
rectangles are considered on pp. 17–21.

“The Chinese Domino Challenge.” Donald Knuth in The Edge of the
Universe, pp. 32–33, eds. Deanna Haunsperger and Stephen Kennedy.
Mathematical Association of America, 2006. This solves the problem
of packing Chinese dominoes (1 × 3 rectangles) in a fault-free 8 × 12
frame.



CHAPTER FOURTEEN

Euler’s Spoilers: The Discovery of
an Order-10 Graeco-Latin Square

the history of mathematics is filled with shrewd conjectures – intu-
itive guesses by men of great mathematical insight – that often wait
for centuries before they are proved or disproved. When this finally
happens, it is a mathematical event of first magnitude. Not one
but two such events were announced in April 1959 at the annual
meeting of the American Mathematical Society. We need not be
concerned with one of them (a proof of a conjecture in advanced
group theory), but the other, a disproof of a famous guess by the
great Swiss mathematician Leonhard Euler (pronounced “oiler”),
is related to many classical problems in recreational mathematics.
Euler had expressed his conviction that Graeco-Latin squares of cer-
tain orders could not exist. Three mathematicians (E. T. Parker, of
Remington Rand Univac, a division of the Sperry Rand Corporation,
and R. C. Bose and S. S. Shrikhande, of the University of North Caro-
lina) completely demolished Euler’s conjecture. They found meth-
ods for constructing an infinite number of squares of the type that
experts, following Euler, for 177 years had believed to be impossible.

The three mathematicians, dubbed “Euler’s spoilers” by their col-
leagues, have written a brief account of their discovery. The follow-
ing quotations from this account are interspersed with comments
of my own to clarify some of the concepts or to summarize the more
technical passages.

“In the last years of his life Leonhard Euler (1707–1783) wrote a
lengthy memoir on a new species of magic square: Recherches sur
une nouvelle espèce de quarres magiques. Today these constructions
are called Latin squares after Euler’s practice of labeling their cells
with ordinary Latin letters (as distinct from Greek letters).”

175
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Figure 88. The Graeco-Latin square (right) is formed by superposing two Latin
squares (left and center). (Artist: Amy Kasai)

Consider, for example, the square at the left in Figure 88. The four
Latin letters a, b, c, and d occupy the 16 cells of the square in such
a way that each letter occurs once in every row and once in every
column. A different Latin square, its cells labeled with the four cor-
responding Greek letters, is shown in the middle of the illustration. If
we superpose these two squares, as shown at the right, we find that
each Latin letter combines once and only once with each Greek let-
ter. As the three mathematicians explain, “When two or more Latin
squares can be combined in this way, they are said to be orthogonal
squares. The combined square is known as a Graeco-Latin square.”

The square at the right provides one solution to a popular card
puzzle of the eighteenth century: Take all the aces, kings, queens,
and jacks from a deck and arrange them in a square so that every
row and column will contain all four values and all four suits. Read-
ers may enjoy searching for another solution in which the two main
diagonals also show one of each suit and one of each value.

According to Euler’s spoilers, “In general a Latin square of order n
is defined as an n ×n square, the n2 cells of which are occupied by n
distinct symbols, such that each symbol occurs exactly once in each
row and once in each column.” There may exist a set of two or more
Latin squares such that any pair of them is orthogonal. In Figure 89
are shown four mutually orthogonal Latin squares of order 5, which
use digits for their symbols.

In Euler’s day it was easy to prove that no Graeco-Latin square
of order 2 is possible. Squares of orders 3, 4, and 5 were known, but
what about order 6? Euler put it this way: Each of six different regi-
ments has six officers, one belonging to each of six different ranks.
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Figure 89. Four mutually orthogonal Latin squares of order 5. (Artist: Amy Kasai)

Can these 36 officers be arranged in a square formation so that each
row and file contains one officer of each rank and one of each regi-
ment?

Euler showed that the problem of n2 officers, which is the same
as the problem of constructing a Graeco-Latin square of order n, can
always be solved if n is odd, or if n is an “evenly even” number (that
is, a number divisible by 4). According to the mathematicians, “On
the basis of extensive trials he stated: ‘I do not hesitate to conclude
that it is impossible to produce any complete square of 36 cells, and
the same possibility extends to the cases of n = 10, n = 14, and in
general to all unevenly even numbers’” (even numbers not divisible
by 4). This became famous as Euler’s conjecture. It may be stated
more formally as follows: There does not exist a pair of orthogonal
Latin squares of order n = 4k + 2 for any positive integer k.

In 1901 the French mathematician Gaston Tarry published a
proof that Euler’s conjecture did indeed hold for a square of order
6. Tarry, assisted by his brother, did it the hard way. He simply listed
all the possible ways of constructing an order-6 Latin square and
then showed that no pair would form a Graeco-Latin square. This,
of course, strengthened Euler’s conjecture. Several mathematicians
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even published “proofs” that the conjecture was true, but the proofs
were later found to contain flaws.

The labor involved in settling the question by exhaustive pencil-
and-paper enumeration goes up rapidly as the order of the square
increases. The next unknown case, the order 10, was far too com-
plex to be settled in this way, and in 1959 it was almost beyond
the range of computers. At the University of California at Los Ange-
les, mathematicians programmed the SWAC computer to search for
order-10 Graeco-Latin squares. After more than 100 hours of run-
ning time, it failed to find a single one. The search was confined,
however, to such a microscopic portion of the total possible cases
that no conclusion could be drawn. It was estimated that, if Euler’s
conjecture were true for order 10, it would take the fastest 1959 com-
puter, using the program SWAC had used, at least 500,000 years to
prove it.

According to Euler’s spoilers, the last sentence of Euler’s memoir
reads as follows: “At this point I close my investigations on a ques-
tion, which though of little use in itself, led us to rather important
observations for the doctrine of combinations, as well as for the gen-
eral theory of magic squares.” The mathematicians suggest that it is
a striking example of the unity of science that the initial impulse
that led to a solution of Euler’s conjecture came from the practical
needs of agricultural experimentation, and that the investigations
that Euler thought useless have proved to have enormous value in
the design of controlled experiments.

Sir Ronald Fisher, now professor of genetics at the University of
Cambridge and one of the world’s leading statisticians, was the first
to show (in the early 1920s) how Latin squares could be used in
agricultural research. Suppose, for example, one wishes to test with
a minimum waste of time and money the effects of seven differ-
ent agricultural chemicals on the growth of wheat. One difficulty
encountered in such a test is that the fertility of different patches of
soil usually varies in an irregular way. How can we design an exper-
iment that will simultaneously test all seven chemicals and at the
same time eliminate any “bias” caused by these fertility variations?
The answer is this: Divide the wheat field into “plots” that are the
cells of a 7 × 7 square, and then apply the seven “treatments” in the
pattern of a randomly chosen Latin square. Because of the pattern,
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a simple statistical analysis of the results will eliminate any bias that
is due to variations in soil fertility.

Suppose that, instead of one variety of wheat for this test, we have
seven. Can we design an experiment that will take this fourth vari-
able into account? (The other three variables are row fertility, col-
umn fertility, and type of treatment.) The answer is now a Graeco-
Latin square. The Greek letters show where to plant the seven
varieties of wheat, and the Latin letters show where to apply the
seven different chemicals. Again, the statistical analysis of results is
simple.

Graeco-Latin squares are now widely used for designing experi-
ments in biology, medicine, sociology, and even marketing. The plot
need not, of course, be a piece of land. It may be a cow, a patient, a
leaf, a cage of animals, the spot where an injection is made, a period
of time, or even an observer or group of observers. The Graeco-
Latin square is simply the chart of the experiment. Its rows take
care of one variable, columns take care of another, the Latin sym-
bols a third, and the Greek symbols a fourth. For example, a medical
investigator may wish to test the effects of five different types of pill
(one a placebo) on persons in five different age brackets, five dif-
ferent weight groups, and five different stages of the same disease.
A Graeco-Latin square of order 5, selected randomly from all pos-
sible squares of that order, is the most efficient design the investi-
gator can use. More variables can be accommodated by superpos-
ing additional Latin squares, though for any order n there are never
more than n − 1 squares that are mutually orthogonal.

The story of how Parker, Bose, and Shrikhande managed to
find Graeco-Latin squares of orders 10, 14, 18, 22, and so on
begins in 1958, when Parker made a discovery that cast grave
doubt on the correctness of Euler’s conjecture. Following Parker’s
lead, Bose developed some strong general rules for the construc-
tion of large-order Graeco-Latin squares. Then Bose and Shri-
khande, applying these rules, were able to construct a Graeco-Latin
square of order 22. Because 22 is an even number not divisible
by 4, Euler’s conjecture was contradicted. It is interesting to note
that the method of constructing this square was based on the solu-
tion of a famous problem in recreational mathematics called Kirk-
man’s schoolgirl problem, proposed by T. P. Kirkman in 1850. A
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Figure 90. E. T. Parker’s Graeco-Latin square of order 10, a counterexample to
Euler’s conjecture. (Artist: Amy Kasai)

schoolteacher is in the habit of taking her 15 girls for a daily walk,
always arranging them three abreast in five rows. The problem is to
arrange them so that for seven consecutive days no girl will walk
more than once in the same row with any other girl. The solution
to this problem is an example of an important type of experimental
design known as “balanced incomplete blocks.”

When Parker saw the results obtained by Bose and Shrikhande,
he was able to develop a new method that led to his construction of
an order-10 Graeco-Latin square. It is shown in Figure 90. The sym-
bols of one Latin square are the digits 0 to 9 on the left side of each
cell. The digits on the right side of each cell belong to the second
Latin square. With the aid of this square, the very existence of which
is denied in many current college textbooks on experimental meth-
ods, statisticians can now, for the first time, design experiments in
which four sets of variables, each with 10 different values, can be
kept easily and efficiently under control.

(Note that the order-3 square at the lower right corner of the
order-10 square is an order-3 Graeco-Latin square. All order-10
squares that were first constructed by Parker and his collaborators
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contained an order-3 subsquare in the sense that one could always
form the smaller square by permuting the rows and columns of the
larger one. Changing the order of rows or columns obviously does
not affect the properties of any Graeco-Latin square. Such permu-
tations are trivial; if one square can be obtained from another by
shifting rows or columns, the two squares are considered the “same”
square. For a while it was an open question whether all order-10
Graeco-Latin squares possessed order-3 subsquares, but this con-
jecture was shown false when many squares were discovered that
did not have this feature.)

“At this stage,” the three mathematicians conclude their report,
“there ensued a feverish correspondence between Bose and Shri-
khande on the one hand and Parker on the other. Methods were
refined more and more; it was ultimately established that Euler’s
conjecture is wrong for all values of n = 4k + 2, where n is greater
than 6. The suddenness with which complete success came in a
problem that had baffled mathematicians for almost two centuries
startled the authors as much as anyone else. What makes this even
more surprising is that the concepts employed were not even close
to the frontiers of deep modern mathematics.” Parker’s achieve-
ment is discussed in Donald Knuth’s The Art of Computer Program-
ming, Addison-Wesley, Vol. 4, 2009, pages 3–7.

ADDENDUM

In the years following 1959, computer speeds increased enormously,
as well as the ingenuity of mathematicians in devising more effi-
cient methods of programming. Parker planned a program for the
UNIVAC 1206 Military Computer that was able to take a given order-
10 Latin square and complete an exhaustive search for an orthogo-
nal companion in a period from 28 to 45 minutes of running time.
This improved on the search time of the old SWAC program by a fac-
tor of about one trillion! The result was the production of hundreds
of new Graeco-Latin squares of order 10. Indeed, it turned out that
such squares are quite common. UNIVAC found orthogonal mates
for more than half of the randomly constructed order-10 Latin
squares that were fed to it. “Thus Euler guessed wrong by a large
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margin,” Parker has written, “and the evidence from early computa-
tion demonstrated only that the search is of large magnitude.”

The big disappointment in the recent computer work on Graeco-
Latin squares is that, so far, no triplet of mutually orthogonal Latin
squares of order 10 has been found. It had earlier been proved that
for any order n, the largest possible number of mutually orthogo-
nal Latin squares is n − 1. A set of n − 1 such squares is known
as a “complete set.” For example, the order-2 Latin square has a
complete set that consists of the single square itself. The order-3
square has a complete set of two orthogonal squares, and the order-
4 square has a complete set of three. A complete set of four mutually
orthogonal Latin squares of order 5 is shown in Figure 89.

These questions take on added interest because of their connec-
tion with what are called “finite projective planes.” (The interested
reader will find these fascinating structures explained in several of
the references listed in the Bibliography for this chapter.) It has been
shown that if a complete set of mutually orthogonal Latin squares
exists for a given order n, it is possible to derive from it a construc-
tion of a finite projective plane of order n. Conversely, if a finite
projective plane is known for order n, one can construct a com-
plete set of mutually orthogonal Latin squares of order n. Because
Tarry showed that not even two orthogonal Latin squares of order
6 are possible, it follows that no finite projective plane of order 6 is
possible. Complete sets (and hence finite projective planes) exist for
orders 2, 3, 4, 5, 7, 8, and 9. The lowest-order finite projective plane,
the existence of which has been neither proved nor disproved, is
order 10. The discovery, therefore, of a complete set of nine order-10
Latin squares would simultaneously answer a major unsolved prob-
lem about finite projective planes. At the moment, the question is
beyond the scope of computer programs, and it is not likely to be
solved unless computer speeds greatly increase or someone discov-
ers a new approach that leads to a breakthrough.

Scientific American’s cover for November 1959 reproduced a strik-
ing oil painting by the magazine’s staff artist, Amy Kasai, showing
the order-10 Graeco-Latin square that is given here in Figure 90.
The 10 digits were replaced by 10 different colors, so that each cell
contained a unique pair of colors. Figure 91 shows a handsome
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Figure 91. A needlepoint rug based on Parker’s Graeco-Latin square. (Mrs. Karl
Wihtol)

needlepoint rug made in 1960, by Mrs. Karl Wihtol, Middletown,
New Jersey, that duplicates the cover painting. (It is equivalent to
the square in Figure 90 after it has been given a counterclockwise
quarter-turn.) The outside colors of each cell form one Latin square;
the inside colors form the other. In every row and column each color
appears only once as an outside color and only once as an inside
color. Miss Kasai’s original painting was purchased by Remington
Rand and presented as a gift to Parker.

ANSWERS

Figure 92 shows one way of arranging the 16 highest playing cards
so that no value or suit appears twice in any row, column, or the
two main diagonals. Note that the four cards at each corner, as well
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Figure 92. A solution to the card problem. (Artist: Amy Kasai)

as the four central cards, also form sets in which each value and
suit are represented. It would be nice if a solution also permitted
the colors to be alternated checkerboard fashion, but this is not
possible.

W. W. Rouse Ball, in Mathematical Recreations and Essays (cur-
rent edition, page 190), cites a 1723 source for the problem and
says that it has 72 fundamentally different solutions, not counting
rotations and reflections as different. But Henry Ernest Dudeney,



Euler’s Spoilers 185

in Amusements in Mathematics, Problem 304, points out the error
in the computation of 72 different solutions. There are 144. This
was independently worked out by Bernard Goldenberg, of Brooklyn,
after I had given the incorrect figure in my answer.

If only rows and columns are considered (and the two main diag-
onals ignored), it is possible to find solutions in which the colors
alternate like a checkerboard. Adolf Karfunkel, of New York City, sent
me several such solutions of which the following is one:

QH KC JD AS
JC AH QS KD
AD JS KH QC
KS QD AC JH

One can obtain other solutions merely by switching rows 3 and 4,
or rows 1 and 2, in Figure 92.

POSTSCRIPT

Does a finite projective plane of order 10 exist? The proof of impos-
sibility was given in 1988 by Clement W. H. Lam and his associates at
Concordia University, Montreal, Canada. Searching for nine mutu-
ally orthogonal Latin squares of order 10 required several thousand
hours of computer time spread over a 3-year period. The program
proved that at most there are eight such squares.

Lam’s proof, like the proof of the four-color theorem, is based
on a computer printout too enormous to be checked line by
line by live mathematicians. This raises the question of whether
it really is a “proof,” or just empirical evidence that is deemed
valid with a high degree of probability. After the 1988 announce-
ment, Lam and his colleagues found two errors, both of which they
managed to patch. Are there more? If so, are they patchable? No
more errors have been found and the proof seems secure. So far,
not even three mutually orthogonal Latin squares have been dis-
covered.

I asked if all Graeco-Latin squares of order 10 contain an order-3
square. As many readers showed, the answer is no.
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Is there an order-10 Graeco-Latin square with both diagonals also
“magic”– that is, with the Graeco-Latin property? The answer is yes.
A beautiful example was found in 1974 by Mel Most, of New York
City:

90 89 72 67 53 44 35 28 16 01
68 47 05 50 81 92 13 36 24 79
29 33 66 91 02 18 74 87 40 55
73 12 20 85 96 07 48 51 39 64
15 94 37 22 78 59 80 03 61 46
57 26 49 04 10 31 62 75 83 98
84 58 11 76 27 63 09 42 95 30
41 00 93 38 69 25 56 14 77 82
06 65 88 43 34 70 21 99 52 17
32 71 54 19 45 86 97 60 08 23
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CHAPTER FIFTEEN

The Ellipse

A circle no doubt has a certain appealing simplicity at the first
glance, but one look at an ellipse should have convinced even the
most mystical of astronomers that the perfect simplicity of the cir-
cle is akin to the vacant smile of complete idiocy. Compared to
what an ellipse can tell us, a circle has little to say. Possibly our
own search for cosmic simplicities in the physical universe is of
this same circular kind – a projection of our uncomplicated men-
tality on an infinitely intricate external world.

– Eric Temple Bell, Mathematics: Queen and Servant of Science

mathematicians have a habit of studying, just for the fun of it, things
that seem utterly useless; then centuries later their studies turn out
to have enormous scientific value. There is no better example of
this than the work done by the ancient Greeks on the noncircular
curves of second degree: the ellipse, the parabola, and the hyper-
bola. They were first studied by one of Plato’s pupils. No important
scientific applications were found for them until the seventeenth
century, when Kepler discovered that planets move in ellipses and
Galileo proved that projectiles travel in parabolas.

Apollonius of Perga, a third-century B.C. Greek geometer, wrote
the greatest ancient treatise on these curves. His work Conics was
the first to show how all three curves, along with the circle, could be
obtained by slicing the same cone at continuously varying angles.
If a plane is passed through a cone so that it is parallel to the base
(see Figure 93), the section is a circle. If the plane is tipped, no
matter how slightly, the section becomes elliptical. The more the
plane is tipped, the more elongated the ellipse becomes, or, as the

189



190 Sphere Packing, Lewis Carroll, and Reversi

CIRCLE

ELLIPSE

HYPERBOLA

PARABOLA

Figure 93. The four conic sections. (Artist: Alex Semenoick)

mathematician puts it, the more eccentric. One might expect that
as the plane became steeper the curve would take on more of a
pear shape (because the deeper the slice goes, the wider the cone),
but this is not the case. It remains a perfect ellipse until the plane
becomes parallel to the side of the cone. At this instant the curve
ceases to close on itself; its arms stretch out toward infinity and
the curve becomes a parabola. Further tipping of the plane causes
it to intersect an inverted cone placed above the other one (see
the bottom of Figure 93). The two conic sections are now the two
branches of a hyperbola. (It is a common mistake to suppose that
the plane must be parallel to the cone’s axis to cut a hyperbola.)
They vary in shape as the cutting plane continues to rotate, until
finally they degenerate into straight lines. The four curves are
called curves of second degree because they are the Cartesian
graph forms of all second-degree equations that relate two vari-
ables.

The ellipse can be defined in numerous ways, but perhaps the
easiest to grasp intuitively is this: An ellipse is the locus, or path,
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MINOR AXIS

FOCUS
MAJOR AXIS

FOCUS

Figure 94. The simplest way to draw an ellipse. (Artist: Alex Semenoick)

of a point moving on a plane so that the sum of its distances from
two fixed points is constant. This property underlies a well-known
method of drawing an ellipse. Stick two thumbtacks in a sheet of
paper, put a loop of string around them and keep the string taut
with the point of a pencil as shown in Figure 94. Moving the pen-
cil around the tacks will trace a perfect ellipse. (The length of the
cord cannot vary; therefore, the sum of the distances of the pencil
point from the two tacks remains constant.) The two fixed points
(tacks) are called the foci of the ellipse. They lie on the major axis.
The diameter perpendicular to this axis is the minor axis. If you
move the tacks closer together (keeping the same loop of cord), the
ellipse becomes less and less eccentric. When the two foci come
together, the ellipse becomes a circle. As the foci move farther apart,
the ellipse becomes more elongated until it finally degenerates into
a straight line.
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Figure 95. An ellipsograph made with a circular cake pan and a cardboard disk.
(Artist: Alex Semenoick)

There are many other ways to construct ellipses. One curious
method can be demonstrated with a circular cake pan and a card-
board disk having half the diameter of the pan. Put friction tape or
masking tape around the inside rim of the pan to keep the disk from
slipping when it is rolled around the rim. Anchor a sheet of paper to
the bottom of the pan with strips of cellophane tape at the edges.
Punch a hole anywhere in the disk with a pencil, place the point
of the pencil on the paper, and roll the disk around the pan (see
Figure 95). An ellipse will be drawn on the paper. It is best to hold
the pencil lightly with one hand while turning the disk slowly with
the other, keeping it pressed firmly against the rim of the pan. If the
hole is at the center of the disk, the pencil point will, of course, trace
a circle. The nearer the hole is to the edge of the disk, the greater
the eccentricity of the ellipse will be. A point on the circumference
of the disk traces an ellipse that has degenerated into a straight
line.

Here is another pleasant way to obtain an ellipse. Cut a large cir-
cle from a sheet of paper. Make a spot somewhere inside the circle,
but not at the center, and then fold the circle so that its circumfer-
ence falls on the spot. Unfold, then fold again, using a different point
on the circumference, and keep repeating this until the paper has
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Figure 96. Folding a paper circle so that its edge falls on an off-center spot makes
an ellipse. (Artist: Alex Semenoick)

been creased many times in all directions. The creases form a set of
tangents that outline an ellipse (see Figure 96).

Though not so simple as the circle, the ellipse is nevertheless the
curve most often “seen” in everyday life. The reason is that every cir-
cle, viewed obliquely, appears elliptical. In addition, all closed non-
circular shadows cast on a plane by circles and spheres are ellipses.
Shadows on the sphere itself – the inner curve of a crescent moon,
for example – are bordered by great circles, but we see them as ellip-
tical arcs. Tilt a glass of water (it doesn’t matter if the glass has cylin-
drical or conical sides) and the surface of the liquid acquires an
elliptical outline.

A ball resting on a table top (see Figure 97) casts an elliptical
shadow that is a cross section of a cone of light in which the ball
fits snugly. The ball rests precisely on one focus of the shadow. If we
imagine a larger sphere that is tangent to the surface from beneath
and fits snugly into the same cone, the larger sphere will touch the
shadow at the other focus. These two spheres provide the follow-
ing famous and magnificent proof (by G. P. Dandelin, a nineteenth-
century Belgian mathematician) that the conic section is indeed an
ellipse.

Point A is any point on the ellipse. Draw a line that passes through
A and the apex of the cone. This line will be tangent to the spheres at
points D and E. Draw a line from A to point B, where the small sphere
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Figure 97. By means of the larger sphere it can be shown that shadow of the
smaller sphere is an ellipse. (Artist: Alex Semenoick)

touches the shadow, and a similar line from A to C, where the large
sphere touches the shadow. AB is equal to AD because both lines are
tangents to a sphere from the same fixed point. AE equals AC for the
same reason. Adding equals to equals,

AD + AE = AB + AC

Now AD + AE is the same as the straight line DE. Because of
the symmetry of cone and spheres, this line has a constant length
regardless of where point A is chosen on the ellipse. If the sum of
AD and AE is constant, then the equation above makes the sum of
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Figure 98. The tangent makes equal angles with the two lines. (Artist: Alex
Semenoick)

AB and AC a constant also. Because AB and AC are the distances of
point A from two fixed points, the locus of A must be an ellipse with
B and C as its two foci.

In physics the ellipse turns up most often as the path of an object
moving in a closed orbit under the influence of a central force that
varies inversely with the square of the distance. Planets and satel-
lites, for example, have elliptical orbits with the center of gravity of
the parent body at one of the foci. When Kepler first announced his
great discovery that planets move in ellipses, it ran so counter to the
general belief that God would not permit the paths of heavenly bod-
ies to be less perfect than circles that Kepler found it necessary to
apologize. He spoke of his ellipses as dung that he had been forced
to introduce in order to sweep from astronomy the larger amount
of dung that had accumulated around attempts to preserve circular
orbits. Kepler himself never discovered why the orbits were ellipti-
cal; it remained for Newton to deduce this from the nature of gravity.
Even the great Galileo to his dying day refused to believe, in the face
of mounting evidence, that the orbits were not circular.

An important reflection property of the ellipse is made clear in
Figure 98. Draw a straight line that is tangent to the ellipse at any
point. Lines from that point to the foci make equal angles with the
tangent. If we think of the ellipse as a vertical strip of metal on a flat
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surface, then any body or wave pulse, moving in a straight line from
one focus, will strike the boundary and rebound directly toward the
other focus. Moreover, if the body or wave is moving toward the
boundary at a uniform rate, regardless of the direction it takes when
it leaves one focus, it is sure to rebound to the other focus after the
same time interval (because the two distances have a constant sum).
Imagine a shallow elliptical tank filled with water. We start a circu-
lar wave pulse by dipping a finger into the water at one focus of the
ellipse. A moment later there is a convergence of circular waves at
the other focus.

Lewis Carroll invented and published a pamphlet about a cir-
cular billiard table. I know of no serious proposal for an ellipti-
cal billiard table, but Hugo Steinhaus (in his book Mathematical
Snapshots, recently reissued in a revised edition by Oxford Univer-
sity Press) gives a surprising threefold analysis of how a ball on
such a table would behave. Placed at one focus and shot (without
English) in any direction, the ball will rebound and pass over the
other focus. Assuming that there is no friction to retard the motion
of the ball, it continues to pass over a focus with each rebound (see
the top illustration of Figure 99). However, after only a few trips the
path becomes indistinguishable from the ellipse’s major axis. If the
ball is not placed on a focus and then driven so that it does not
pass between the foci, it continues forever along paths tangent to
a smaller ellipse with the same foci (see the middle illustration of
Figure 99). If the ball is driven between the foci (see the bottom illus-
tration of Figure 99), it travels endlessly along paths that never get
closer to the foci than a hyperbola with the same foci.

In The Mikado there are lines about a billiard player forced to play

On a cloth untrue
With a twisted cue,
And elliptical billiard balls!

In A Portrait of the Artist as a Young Man, James Joyce has a
teacher quote these lines, then explain that by “elliptical” W. S.
Gilbert really meant “ellipsoidal.” What is an ellipsoid? There are
three principal types. An ellipsoid of rotation, more properly called
a spheroid, is the surface of a solid obtained by rotating an ellipse
around either axis. If the rotation is around the minor axis, then it
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Figure 99. Path of a ball driven over a focus of an ellipse (top); path of a ball that
does not go between the foci (middle); and path of a ball that passes between the
foci (bottom). (Artist: Alex Semenoick)

generates an oblate spheroid, which is flattened at the poles like the
earth. Rotation around the major axis generates the football-shaped
prolate spheroid. Imagine a prolate spheroid surface that is a mirror
on the inside. If a candle is lighted at one focus, then a piece of paper
at the other focus will burst into flames.

Whisper chambers are rooms with spheroidal ceilings. Faint
sounds originating at one focus can be heard clearly at the other
focus. In the United States the best-known whispering gallery is in
Statuary Hall of the Capitol in Washington, D.C. (No guided tour is
complete without a demonstration.) A smaller but excellent whisper
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Figure 100. Each section of an ellipsoid is elliptical. (Artist: Alex Semenoick)

chamber is a square area just outside the entrance to the Oyster Bar
on the lower level of New York’s Grand Central Station. Two people
standing in diagonally opposite corners, facing the wall, can hear
each other distinctly even when the square area bustles with activity.

Both the oblate and prolate spheroids have circular cross sec-
tions if sliced by planes perpendicular to one of the three coordinate
axes, and elliptical cross sections if sliced by planes perpendicular
to the other two axes. When all three axes are unequal in length, and
sections perpendicular to each are ellipses, the shape is a true ellip-
soid (see Figure 100). This is the shape that pebbles on a beach tend
to assume after long periods of being jostled by the waves.

Elliptical “brainteasers” are rare. Here are two easy ones.

1. Prove that no regular polygon having more sides than a
square can be drawn on a noncircular ellipse so that each
corner is on the perimeter of the ellipse.

2. In the paper-folding method of constructing an ellipse,
explained earlier, the center of the circle and the spot on the
circle are the two foci. Prove that the curve outlined by the
creases is really an ellipse.

ADDENDUM

Henry Dudeney, in Problem 126 of Modern Puzzles, explains the
string-and-pins method of drawing an ellipse; he then asks how one
can use this method for drawing an ellipse with given major and
minor axes. The method is simple.

First draw the two axes. The problem now is to find the two foci,
A and B, of an ellipse with these axes. Let C be an end of the minor
axis. Points A and B are symmetrically located on the major axis at
spots such that AC and CB each equals half the length of the major
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axis. It is easy to prove that a loop of string with a length equal to
the perimeter of triangle ABC will now serve to draw the desired
ellipse.

Elliptical pool tables actually went on sale in the United States in
1964. A full-page advertisement in The New York Times (July 1, 1964)
announced that on the following day the game would be intro-
duced at Stern’s department store by Broadway stars Joanne Wood-
ward and Paul Newman. Elliptipool, as it is called, is the patented
invention of Arthur Frigo, Torrington, Connecticut, then a graduate
student at Union College in Schenectady. Because the table’s one
pocket is at one of the foci, a variety of weird cushion shots can be
made with ease.

The eleventh edition of Encyclopaedia Britannica in its article on
billiards has a footnote that reads as follows: “In 1907 an oval table
was introduced in England by way of a change.” Neither this table
nor Lewis Carroll’s circular table had a pocket, however. A design
patent (198,571) was issued in July 1964 to Edwin E. Robinson,
Pacifica, California, for a circular pool table with four pockets.

ANSWERS

1. No regular polygon with more sides than a square can be in
scribed in an ellipse for this reason: The corners of all regular
polygons lie on a circle. A circle cannot intersect an ellipse at
more than four points. Therefore, no regular polygon with more
than four corners can be placed with all its corners on an ellipse.
This problem was contributed by M. S. Klamkin to Mathematics
Magazine for September-October 1960.

2. The proof that the paper-folding method of constructing an
ellipse actually does produce an ellipse is as follows. Let point
A in Figure 101 be any point on a paper circle that is not the
circle’s center (O). The paper is folded so that any point (B) on
the circumference falls on A. This creases the paper along XY.
Because XY is the perpendicular bisector of AB, BC must equal
AC. Clearly OC + AC = OC + CB. OC + CB is the circle’s radius,
which cannot vary; therefore, OC + AC must also be constant.
Because OC + AC is the sum of the distances of point C from two
fixed points A and O, the locus of C (as point B moves around
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Figure 101. Answer to the paper-folding problem. (Artist: Alex Semenoick)

the circumference) must be an ellipse with A and O as the two
foci.

The crease XY is tangent to the ellipse at point C because it
makes equal angles with the lines joining C to the foci. This is
easily established by noting that angle XCA equals angle XCB,
which in turn equals angle YCO. Because the creases are always
tangent to the ellipse, the ellipse becomes the envelope of the
infinite set of creases that can be produced by repeated fold-
ing of the paper. This proof is taken from Donovan A. Johnson’s
booklet Paper Folding for the Mathematics Class, published in
1957 by the National Council of Teachers of Mathematics.
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CHAPTER SIXTEEN

The 24 Color Squares and
the 30 Color Cubes

in the United States a standard set of dominoes consists of 28
oblong black tiles, each divided into two squares that are either
blank or marked with white spots. No two tiles are alike, and
together they represent the 28 possible ways in which numbers from
0 to 6 can be combined two at a time. The tiles can be regarded
as line segments that are placed end to end to form linear chains;
in this sense all domino games are strictly one dimensional. When
the domino concept is extended to two- and three-dimensional
pieces, all sorts of colorful and little-known recreations arise. Percy
Alexander MacMahon, a British authority on combinatorial analy-
sis, devoted considerable thought to these superdominoes, and it is
from his book New Mathematical Pastimes, published in 1921, that
much of the following material is taken.

For a two-dimensional domino, the equilateral triangle, square,
and hexagon are the most convenient shapes because in each case
identical regular polygons can be fitted together to cover a plane
completely. If squares are used and their edges are labeled in all
possible ways with n different symbols, a set of 1/4n(n2 − n + 2)
squares can be formed. Figure 102 shows the full set of 24 square
dominoes that results when n = 3. If the reader constructs such a
set from cardboard, she or he will have the equipment for a first-
rate puzzle. Colors are easier to work with than symbols, so it is sug-
gested that colors be used instead of symbols. The problem is to fit
together all 24 squares into a 4 × 6 rectangle, with two provisos: (1)
each pair of touching edges must be the same color; (2) the border
of the rectangle, all the way around, must be the same color. It is
assumed that the cardboard squares are colored on only one side.

202
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Figure 102. A set of square dominoes using three colors. (Artist: Alex Semenoick)

Any color may be picked for the border; with each choice, a large
number of different solutions are possible.

The 4 × 6 rectangle is the only one that can be formed under the
given restrictions. A 2 × 12 is obviously impossible because it would
require that each square have a triangle of the border color. Can the
reader, simply by looking over the 24 color squares in Figure 102,
prove that the 3 × 8 rectangle is also impossible?
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In three dimensions, cubes are the only regular solids that will
press together to fill a three-dimensional space completely; for this
reason they are the most satisfactory shapes for three-dimensional
dominoes. On one hand, if two colors are used for the faces, no more
than 10 different cubes can be painted – a number too small to be
of interest. On the other hand, too many cubes (57) result if three
colors are used. With six colors the number jumps to 2,226, but from
this set we can pick a subset of 30 that is ideal for our purposes. It
consists of cubes that bear all six colors on their six faces.

It is easy to see that 30 is the maximum number. There must be,
say, a red face on each cube. Opposite this face can be any one of
five different colors. The remaining four colors can be arranged in
six different ways, so the total number of different cubes must be
5 × 6 = 30. (Two cubes are considered different if it is impossible to
place them side by side in such a way that all corresponding faces
match.) Figure 103 shows the 30 cubes in “unfolded” form.

The 30 cubes, apparently discovered by MacMahon, have be-
come a classic of recreational geometry. It is a chore to make a set,
but the effort brings rich rewards. A set of neatly painted cubes is an
endlessly fascinating family toy; it requires no batteries and is
unlikely to wear out for decades. Wooden or plastic blocks, prefer-
ably with smooth sides, can be bought at most toy counters or
obtained from a friend with access to a buzz saw. An alternative to
painting is to paste squares of colored paper on the cubes.

For an introductory exercise, pick any one of the 30 cubes. Now
find a second cube that can be placed face to face with the first one
so that the touching faces match, the end faces are a second color,
and the other four colors are on the four sides, each side a solid
color. It is always possible to do this. Because the two cubes are mir-
ror images of each other, this means that every cube, like every fun-
damental particle of matter, has its anticube.

(In searching for a certain type of cube, you can save much time
by lining the cubes up in rows and turning an entire row at once by
applying pressure at the ends. For example, suppose you are looking
for cubes with red and blue on opposite sides. Arrange a group of
cubes in a row with red on top, give the row two quarter-turns, and
take out all cubes that now show blue on top. Or suppose you wish to
work with cubes on which blue, yellow, and green touch at the same
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Figure 103. The 30 color cubes unfolded. (Artist: Peter Renz)

corner. Arrange a row with all blue on top, invert it, and discard the
greens and yellows. Turn the remaining cubes to show green on top,
invert them, and discard the blues and yellows. The cubes left will
be of the desired type.)

It is not possible to form a straight chain of more than two cubes
and have each of the four sides a solid color, but a row of six is eas-
ily made that has all six colors on each side. A pretty problem is to
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do this with all touching faces matching and the two end faces also
matching.

Now for a more difficult puzzle. Choose any cube and place it to
one side. From the remaining 29, select 8 that can be formed into a
2 × 2 × 2 cube that is an exact model of the chosen one except twice
as high. In addition, each pair of touching faces must match. This
can always be done, regardless of which cube is chosen. If it can be
done with one cube, it can be done with any cube because the cubes
are all alike except for the way their colors are permuted.

Only one set of 8 cubes will do the trick, and they are not easy to
find without a systematic procedure. The following is perhaps the
best. Note the three pairs of opposite faces on the prototype; then
eliminate from the 29 cubes all those that have a pair of opposite
faces corresponding to any of the three pairs on the prototype. Six-
teen cubes will remain. Turn the prototype so that one of its top cor-
ners points toward you and only the three faces meeting at that cor-
ner are visible. Among the 16 cubes you will find 2 that can be placed
so that the same three faces are in the same position as the three on
the prototype. Put these 2 aside. Turn the cube so that another top
corner points toward you and find the 2 cubes that match this cor-
ner. The 8 cubes selected in this way – 2 for each top corner of the
prototype – are the cubes required. It is now a simple task to build
the model.

Actually, there are two essentially different ways to build the
model with these eight cubes. L. Vosburgh Lyons, a Manhattan neu-
ropsychiatrist, devised the ingenious procedure, depicted in Fig-
ure 104, by which any model can be changed to its second form. The
two models are related in remarkable ways. The 24 outside faces of
each model are the 24 inner faces of the other, and when the two
models are similarly oriented, each cube in one is diagonally oppo-
site its location in the other.

Lyons has discovered that after a model has been built it is always
possible to select a new prototype from the remaining 21 cubes
and then build a 2 × 2 ×2 model of the new prototype with 8 of
the remaining 20. Few people succeed in doing this unless they are
tipped off to the fact that the new prototype must be a mirror image
of the first one. The 8 cubes needed for the model are the 8 rejected
from the 16 in the last step of the procedure by which the cubes were
chosen for the first prototype.



Figure 104. The Lyons method of transforming a model to its second form.
(Artist: Alex Semenoick)
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Many other color-cube construction puzzles have been pro-
posed. The following 2 × 2 × 2 models, all possible, are taken from
Das Spiel der 30 Bunten Würfel, a book on the color cubes by Ferdi-
nand Winter that was published in Leipzig in 1934. In all these mod-
els the cubes must obey the domino rule of having touching faces of
like color.

1. One color on left and right faces, a second color on front and
back, a third color on top, and a fourth on bottom.

2. One color on two opposite faces; different colors on the other
four.

3. One color on left and right faces, a second color on front and
back, the remaining four colors on top (each square a differ-
ent color), and the same four colors on bottom.

4. Each face is a four-colored face, with the same four colors on
every face.

Apparently it is not possible to build a 2 × 2 × 2 cube with one
color on front and back, a second color on left and right, a third on
top and bottom, and all touching faces matching. It is possible to
build a 3 × 3 × 3 cube with each face a different color, but not with-
out violating the domino rule about touching faces.

Games of the domino type can be played with any species of two-
or three-dimensional domino; in fact, Parker Brothers still sells a
pleasant game called Contack (first brought out by them in 1939),
which is played with equilateral-triangle tiles. Of several games that
have been proposed for the color cubes, a game called Color Tower
seems the best.

Two players sit opposite each other. Each has in front of him or
her a screen that is easily made by taking a long strip of cardboard
about 10 inches wide and folding the ends to make it stand upright.
The cubes are put into a container in which they cannot be seen but
from which they can be taken one at a time. A paper bag will do, or
a cardboard box with a hole in the top.

Each player draws seven cubes from the container and places
them behind his or her screen, where they are hidden from the
player’s opponent. The first player opens the game by placing a cube
in the middle of the table. (The privilege of opening can be decided
by rolling a cube after a player has named three colors. If one of the
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Figure 105. The game of Color Tower. (Artist: Peter Renz)

three comes up, he plays first.) The second player then places a cube
against the side of the first one, touching faces matching. Players
alternate turns, each adding one cube to the structure, and in this
way they build a tower that rests on a square base of four cubes. A
player’s object is to get rid of all of his or her cubes.

The rules are as follows.

1. Each tier of four cubes must be completed before starting the
next tier.

2. A cube may be placed in any open spot on a tier, provided
that it meets two conditions: all touching faces must match,
and it must not make impossible any remaining play on the
tier. In Figure 105, for example, cube A would be illegally
played if any of its faces met at right angles with an exposed
face of the same color.

3. If a player cannot play any of his cubes, he must draw one
from the container. If the drawn cube is playable, he may
play it if he wishes. If he cannot or does not wish to play it,
he awaits his next turn.
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4. If for strategic reasons a player wishes to pass up her turn,
she may do so at any time, but she must draw a cube from
the container.

5. The game ends when one player is rid of all his cubes. He
scores 3 points for winning, plus the number of cubes that
remain in his opponent’s hand.

6. If all cubes are drawn from the container, turns alternate
until one player is unable or unwilling to play. The other
player then plays until her opponent is able or willing to con-
tinue. If both are unable or unwilling to play, the game ends
and the person with the smallest hand is the winner. She
scores the difference between hands.

7. The goal of a set of games can be any agreed-upon number
of points. If played as a gambling game, the winner collects
after each game an amount equal to his score.

Various strategies occur to anyone who plays Color Tower for a
while. Suppose your opponent has just started a new tier. You have
two cubes left. It would be unwise to play diagonally opposite his
cube in such a way as to make your last cube unplayable in either of
the remaining three-face plays. It may be necessary to play along-
side his cube to keep open the possibility of going out on your
next move. The discovery of such strategies makes the learning of
Color Tower a stimulating experience and leads to a skill in play that
greatly increases one’s probability of winning.

If any reader has suggestions for improving Color Tower I would
enjoy hearing about them, as well as about any other games or
unusual new puzzles with the cubes. The 30 color cubes have been
around for more than 70 years, but they probably contain many
more surprises.

ADDENDUM

When I explained MacMahon’s puzzle with the 24 color squares, I
made the blunder (I had misinterpreted one of MacMahon’s com-
ments) of saying that it had only one solution. This proved to be
the greatest understatement ever made in the column. First, I heard
from about 50 readers who sent more than one pattern. Thomas
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Figure 106. Three of the 12,261 solutions to the color-square problem: the lob-
ster (left), three isolated diamonds of different colors (middle), and 13 isolated
diamonds (right). (Artist: Harold Jacobs)

O’Beirne devoted his column, “Puzzles and Paradoxes,” in The New
Scientist (February 2, 1961) to the puzzle and showed how dozens of
solutions could be obtained.

In Buenos Aires the problem caught the interest of Federico Fink.
He and his friends found hundreds of distinct solutions (rotations
and reflections are not, of course, counted as different), and over the
months his list grew into the thousands. On November 20, 1963, he
wrote to say that he estimated the total number of different patterns
to be 12,224.

The matter was settled early in 1964. Fink suggested to Gary
Feldman, at Stanford University’s Computation Center, that he write
a computer program for the puzzle. Feldman did. The center’s
B5000, using a program written in ALGOL and running about 40
hours, produced a complete list of all possible patterns. There are
12,261. Fink missed by only 37, a truly amazing prediction. Feld-
man’s account of his program, “Documentation of the MacMahon
Squares Problem,” a Stanford Artificial Intelligence Project Memo
No. 12, was issued as an eight-page typescript by the Computation
Center on January 16, 1964.

It would take many pages to summarize the main results of Fink’s
analysis of the 12,261 solutions. None of the patterns, regretfully,
exhibits bilateral symmetry. The maximum number of “diamonds”
(single-color squares formed by two right triangles) that can come
together to form a polyomino of one color is 12. Figure 106, left,
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shows such a pattern; the order-12 polyomino has bilateral sym-
metry and resembles a lobster. The minimum number of “isolated
diamonds” (diamonds completely surrounded by other colors) is
three. Figure 106, middle, is a pattern in which each of the three iso-
lated diamonds is a different color. The maximum number of iso-
lated diamonds is 13, as exemplified by Figure 106, right.

Note that all three patterns show a horizontal bridge of three dia-
monds, of the border color, that join right and left borders. O’Beirne,
in his New Scientist column, proved that every solution must have
such a bridge. The bridge’s position, together with the other spots
of border color, provides a convenient classification of 20 different
species of solution. (O’Beirne listed 18, but Fink later found 2 more.)

Many recreations involving color cubes await exploration. For
instance, from the set of 57 cubes with one, two, and three colors,
one can pick the 27 that bear no more than two different colors on
any one cube. Because 27 cubes form one 3 × 3 × 3, there may be
some good construction problems here. Or one could work with the
subset of 30 that have three different colors on each cube. Some
of the constructions not possible with the 30 six-color cubes may
be possible with these 30 three-color cubes. Can an all-red cube be
made, for example, under the usual restriction that touching faces
be the same color?

MacMahon, who presumably invented the 30-color-cube recre-
ation, was born in Malta in 1854. A career in India as a soldier
in England’s Royal Artillery was cut short by a serious illness. He
returned to England, where he taught mathematics at the Royal Mil-
itary Academy and soon became an eminent mathematician. He
is best known for his Introduction to Combinatory Analysis and his
article on the topic in the eleventh edition of Encyclopaedia Britan-
nica. He died in 1929 at the age of 75.

Thomas O’Beirne informs me that a set of eight color cubes, to
be formed into one larger cube according to certain provisos, was
once sold in England as the Mayblox puzzle, with credit on the box’s
cover to MacMahon as the inventor.

A popular puzzle often found on sale in different countries, under
various trade names, consists of four cubes, each colored with four
different colors. The puzzle is to arrange them in one row so that all
four colors (in any order) appear on each side of the 4 × 1 square
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prism. Sometimes symbols, such as the four card suits or advertis-
ing pictures of products, appear instead of colors. For descriptions
of such puzzles, see R. M. Abraham, Diversions and Pastimes, Dover,
1964, page 100; and Anthony Filipiak, 100 Puzzles, A. S. Barnes, 1942,
page 108. A thorough analysis of puzzles of this type will be found
in Chapter 7, “Cubism and Colour Arrangements,” of O’Beirne’s
Puzzles and Paradoxes, Oxford University Press, 1965.

ANSWERS

Three sample solutions for MacMahon’s color-square puzzle were
given in the addendum. Solutions for the color-cube problems are
left for readers to discover.

To prove that the 3 × 8 rectangle cannot be formed with the 24
color squares, to meet the imposed conditions, first select any 4
squares, with adjacent triangles of the same color, to go in the four
corners. Exactly 14 squares, bearing the same color, remain; this is
just enough for the 14 remaining border cells of the rectangle. At
least 3 of them, however, will have the border color on opposite
sides, calling for 3 internal squares bearing the same color. But there
are no more squares with this color; all have been used for the bor-
der. The 3 × 8, therefore, is an impossible rectangle.

POSTSCRIPT

The count I reported of 12,261 patterns for the 4 × 6 rectangle made
with the 24 color squares appears to have missed more than 1,000! At
any rate, Hilario Fernandez Long, of Buenos Aires, in 1977, counted
13,328 patterns. John Harris, of Santa Barbara, California, wrote a
fast program that verified this count. Harris also obtained a count of
1,482 solutions for a pair of 3 × 4 rectangles. Wade Philpott, of Lima,
Ohio, modified Harris’s program to obtain 128 solutions for a triplet
of 2 × 4 rectangles.

A later column on MacMahon’s 24 color triangles is reprinted in
Book 7. A column on the 30 cubes, with startling new discoveries by
John Conway, is in Book 14.

Harry Nelson has invented several delightful board games using
MacMahon’s 24 color squares. Called Pohaku (Hawaiian for stone),
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the games have been marketed by Norman and Globus and are
currently available from Borders. For an introduction to Pohaku
dominoes, see Scott Kim’s column, Mind Games, in Discover (March
2008).

MacMahon and a friend patented a similar game played with the
24 colored triangles. Players alternately place a triangle on a hexag-
onal board so that its edges match those of previously placed trian-
gles. The first player unable to place a piece loses.

In 1968 a set of four color cubes was marketed here with enor-
mous success under the trade name of Instant Insanity. For details
about this puzzle craze, along with pages devoted to problems
involving MacMahon triangles, see Chapter 16 of Book 7.

A pamphlet titled MacMahon’s Pieces On Three-Dimensional Sur-
faces was published by author Dario Uri in 2000. Uri had the pleas-
ant notion of posing problems in which MacMahon’s triangles
and squares would wrap around various solids so that the edges
matched colors. He posed and solved 38 of 39 puzzles. Donald
Knuth succeeded in cracking the final puzzle. One of Uri’s problems
turned out to be identical to John Conway’s Quintomino puzzle that
I give in Chapter 2 of Book 10.
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CHAPTER SEVENTEEN

H. S. M. Coxeter

most professional mathematicians enjoy an occasional romp in
the playground of mathematics in much the same way that they
enjoy an occasional game of chess; it is a form of relaxation that
they avoid taking too seriously. On the other hand, many creative,
well-informed puzzlists have only the most elementary knowledge
of mathematics. H. S. M. Coxeter, professor of mathematics at the
University of Toronto, is one of those rare individuals who are emi-
nent as mathematicians and as authorities on the not-so-serious
side of their profession.

Harold Scott Macdonald Coxeter was born in London in 1907
and received his mathematical training at Trinity College, Cam-
bridge. On the serious side he is the author of Non-Euclidean Geom-
etry (1942), Regular Polytopes (1948), and The Real Projective Plane
(1955). On the lighter side he has edited and brought up to date
W. W. Rouse Ball’s classic work Mathematical Recreations and Essays
and has contributed dozens of articles on recreational topics to vari-
ous journals. In 1961, Wiley published his Introduction to Geometry,
a book that is the topic of this chapter.

There are many ways in which Coxeter’s book is remarkable.
Above all, it has an extraordinary range. It sweeps through every
branch of geometry, including such topics as non-Euclidean geom-
etry, crystallography, groups, lattices, geodesics, vectors, projec-
tive geometry, affine geometry, and topology – topics not always
found in introductory texts. The writing style is clear, crisp, and
for the most part technical. It calls for slow, careful reading but
has the merit of permitting a vast quantity of material to be com-
pressed between its covers. The book is touched throughout with

216
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the author’s sense of humor, his keen eye for mathematical beauty,
and his enthusiasm for play. Most of its sections open with apt lit-
erary quotations, many from Lewis Carroll, and close with exercises
that are often new and stimulating puzzles. A number of sections
deal entirely with problems and topics of high recreational interest,
some of which have been discussed, on a more elementary level, in
this and the two previous volumes of this series: the golden ratio,
regular solids, topological curiosities, map coloring, the packing of
spheres, and so on.

Amusing bits of off-trail information dot the text. How many
readers know, for example, that in 1957 the B. F. Goodrich Company
patented the Möbius strip? Its patent, No. 2,784,834, covers a rubber
belt that is attached to two wheels and is used for conveying hot or
abrasive substances. When the belt is given the familiar half-twist, it
wears equally on both sides – or rather on its single side.

And how many readers know that at the University of Göttingen
there is a large box containing a manuscript showing how to con-
struct, with compass and straightedge only, a regular polygon of
65,537 sides? A polygon with a prime number of sides can be con-
structed in the classical manner only if the number is a special type
of prime called a Fermat prime: a prime that can be expressed as
2(2n) + 1 . Only five such primes are known: 3, 5, 17, 257, and 65,537.
The poor fellow who succeeded in constructing the 65,537-gon,
Coxeter tells us, spent 10 years on the task. No one knows whether
there is a prime-sided polygon larger than this that is in principle
constructible with compass and straightedge. If there is such a poly-
gon, its actual construction would be out of the question, because
the number of sides would be astronomical. It might be supposed
that the lowly triangle, studied so thoroughly by the ancients, would
contain few new surprises. Nevertheless, many remarkable theo-
rems about the triangle – theorems that Euclid could easily have dis-
covered but didn’t – have been found only in recent times. One out-
standing example, discussed by Coxeter, is Morley’s theorem. It was
first discovered about 1899 by Frank Morley, professor of mathe-
matics at Johns Hopkins University and father of the writer Christo-
pher Morley. It spread rapidly through the mathematical world in
the form of gossip. The earliest proofs of the theorem, by M. T.
Naraniengar and M. Satyanarayana, appeared in The Educational
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Figure 107. Morley’s theorem. (Artist: James Egleson)

Times, New Series, Vol. 15 (1909), page 47 and pages 23–24. See
this chapter’s list of references for more recent proofs. When Paul
and Percival Goodman, in Chapter 5 of their wonderful little book
Communitas, speak of human goods that are not consumed while
being enjoyed, it is Morley’s beautiful theorem that provides a happy
illustration.

Morley’s theorem is illustrated in Figure 107. A triangle of any
shape is drawn, and its three angles are trisected. The trisecting lines
always meet at the vertices of an equilateral triangle. It is the appear-
ance of that small equilateral triangle, known as the Morley triangle,
that is so totally unexpected. Professor Morley wrote several text-
books and did important work in many fields, but it is this theo-
rem that has earned him his immortality. Why was it not discovered
earlier? Coxeter thinks that perhaps mathematicians, knowing the
angle could not be trisected within the classical limitations, tended
to shy away from theorems involving angle trisections.

Another triangle theorem that has achieved widespread notori-
ety in this century is illustrated in Figure 108. If the internal bisec-
tors of the two base angles of a triangle are equal, it seems intuitively
obvious that the triangle must be isosceles. But can you prove it? No
problem in elementary geometry is more insidiously deceptive. Its
converse – the bisectors of the base angles of an isosceles triangle
are equal – goes back to Euclid and is easy to prove. This one looks
as if a proof would be just as easy, when in fact it is extremely diffi-
cult. Every few months someone sends me a plea for a proof of this
problem. I usually reply by citing an article by Archibald Henderson
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Figure 108. The internal bisector problem. (Artist: James Egleson)

that appeared in the Journal of the Elisha Mitchell Scientific Soci-
ety for December 1937. Henderson calls his paper, almost 40 pages
long, “an essay on the internal bisector problem to end all essays on
the internal bisector problem.” He points out that many published
proofs, some by famous mathematicians, are faulty; then he gives
10 valid proofs, all long and involved. It is a pleasant shock to find in
Coxeter’s book a new proof, so simple that all he need do is devote
four lines to a hint from which the proof is easily derived.

Now and then, when someone discovers an elegant new theo-
rem, he or she is moved to record it in verse. An amusing modern
instance is “The Kiss Precise,” a poem by the distinguished chemist
Frederick Soddy, who coined the word “isotope.” If three circles of
any size are placed so that each touches the other two, it is always
possible to draw a fourth circle that touches the other three. Usu-
ally there are two ways to draw a fourth circle; sometimes one is a
large circle enclosing the other three. In Figure 109, for instance, the
two possible fourth circles are shown as broken lines. How are four
mutually tangent circles related to each other in size? Soddy, as the
result of a procedure that he later confessed he never really under-
stood, chanced upon the following beautifully symmetrical formula,
in which a, b, c, and d are the reciprocals of the four radii:

a 2 + b 2 + c 2 + d2 = 1/2(a + b + c + d )2

The reciprocal of a number n is simply 1/n, and the reciprocal
of any fraction is obtained by turning the fraction upside down.
The reciprocal of a radius is the measure of a circle’s curvature.
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Figure 109. Frederick Soddy’s “The Kiss Precise.” (Artist: James Egleson)

A concave curvature, such as that of a circle enclosing the other
three, is considered a negative curvature and is handled as a nega-
tive number. In his poem Soddy uses the term “bend” for curvature.
Coxeter quotes the second stanza of the poem as follows:

Four circles to the kissing come,
The smaller are the benter.
The bend is just the inverse of
The distance from the centre.
Though their intrigue left Euclid dumb
There’s now no need for rule of thumb.
Since zero bend’s a dead straight line
And concave bends have minus sign,
The sum of the squares of all four bends
Is half the square of their sum.

Soddy’s formula is a great timesaver for puzzlists; problems
involving kissing circles, often found in puzzle books, are tough to
crack without it. For example, if the three solid circles in Figure 109
have radii of 1, 2, and 3 inches, what are the radii of the broken
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circles? This can be answered by drawing a large number of right tri-
angles and doggedly applying the Pythagorean theorem, but Soddy’s
formula gives a simple quadratic equation with two roots that are
the reciprocals of the two radii sought. The positive root gives the
small broken circle a curvature of 23/6 and a radius of 6/23 inches;
the negative root gives the large broken circle a negative curvature
of −1/6 and a 6-inch radius.

Readers who care to test the formula’s power on another prob-
lem can consider this situation. A straight line is drawn on a plane.
Two kissing spheres, one with a radius of 4 inches, the other with a
radius of 9 inches, stand on the line. What is the radius of the largest
sphere that can be placed on the same line so that it kisses the other
two? Instead of Soddy’s formula one can use the following equiv-
alent expression, supplied by Coxeter, which makes the computa-
tion much easier. Given the three reciprocals, a, b, and c, the fourth
reciprocal is as follows:

a + b + c ± 2
√

ab + bc + ac

From an artist’s point of view, some of the most striking pictures
in Coxeter’s richly illustrated volume accompany his discussions of
symmetry and the role played by group theory in the construction
of repeated patterns such as are commonly seen in wallpaper, tile
flooring, carpeting, and so on. “A mathematician, like a painter or
a poet, is a maker of patterns,” wrote the English mathematician
G. H. Hardy in a famous passage quoted by Coxeter. “If his pat-
terns are more permanent than theirs, it is because they are made
with ideas.” When polygons are fitted together to cover a plane with
no interstices or overlapping, the pattern is called a tessellation.
A regular tessellation is one made up entirely of regular polygons,
all exactly alike and meeting corner to corner (that is, no corner of
one touches the side of another). There are only three such tessella-
tions: a network of equilateral triangles, the checkerboard pattern of
squares, and the hexagonal pattern of the honeycomb, chicken wire,
and bathroom tiling. The squares and triangles can also be made to
fill the plane without placing them corner to corner, but this cannot
be done with the hexagons.

“Semiregular” tessellations are those in which two or more kinds
of regular polygons are fitted together corner to corner in such a way
that the same polygons, in the same cyclic order, surround every
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Figure 110. The eight “semiregular” tessellations. (Artist: James Egleson)

vertex. There are precisely eight of these tessellations, made up of
different combinations of triangles, squares, hexagons, octagons,
and dodecagons (see Figure 110). All of them would, and some
do, make excellent linoleum patterns. All are unchanged by mirror
reflection except the tessellation in the lower right-hand corner, a
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pattern first described by Johannes Kepler. It has two forms, each
a mirror image of the other. An enjoyable pastime is to cut a large
number of cardboard polygons of the required sizes and shapes,
paint them various colors, and fit them into these tessellations. If
the restriction about the vertices is removed, the same polygons will
form an infinite variety of mosaics. (Some striking examples of these
nonregular but symmetrical tessellations are reproduced in Hugo
Steinhaus’ Mathematical Snapshots, recently reprinted by Oxford
University Press.)

All tessellations that cover the plane with a repeated pattern
belong to a set of 17 different symmetry groups that exhaust all
the fundamentally different ways in which patterns can be repeated
endlessly in two dimensions. The elements of these groups are sim-
ply operations performed on one basic pattern: sliding it along the
plane, rotating it, or giving it a mirror reversal. The 17 symmetry
groups are of great importance in the study of crystal structure; in
fact, Coxeter states that it was the Russian crystallographer E. S.
Fedorov who in 1891 first proved that the number of such groups
is 17. “The art of filling a plane with a repeated pattern,” writes Cox-
eter, “reached its highest development in thirteenth-century Spain,
where the Moors used all 17 groups in their intricate decorations
of the Alhambra. Their preference for abstract patterns was due to
their strict observance of the Second Commandment [‘Thou shalt
not make thee any graven image . . . ’].”

It is not necessary, of course, to limit the fundamental shapes of
such patterns to abstract forms. Coxeter goes on to discuss the inge-
nious way in which the Dutch artist Maurits C. Escher, now living
in Baarn, has applied many of the 17 symmetry groups to mosaics
in which animal shapes are used for the fundamental regions. One
of Escher’s amazing mosaics, reproduced in Coxeter’s book, is the
knight on horseback shown in Figure 111; another is reproduced
in Figure 112. At first glance, Coxeter points out, the knight pattern
appears to be the result of sliding a basic shape along horizontal and
vertical axes; but on closer inspection one sees that the same basic
shape also furnishes the background. Actually, the more interesting
symmetry group for this pattern is generated by what are called glide
reflections: sliding the shape and simultaneously giving it a mir-
ror reversal. Strictly speaking, this is not a tessellation because the
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Figure 111. One of Maurits Escher’s mathematical mosaics.

fundamental region is not a polygon. The pattern belongs to a curi-
ous class of mosaics in which irregular shapes, all exactly alike, lock
together like pieces in a jigsaw puzzle to cover the plane. Abstract
shapes of this sort are not hard to devise, but when they are made
to resemble natural objects, they are not so easy to come by. Escher
is a painter who enjoys playing with mathematical structure. There
is a respectable school of aesthetics that views all art as a form of
play, and an equally respectable school of mathematics that looks
upon all mathematical systems as meaningless games played with
symbols according to agreed-upon rules. Is science itself another
kind of game? On this question Coxeter quotes the following lines
from John Lighton Synge, the Irish mathematical physicist:

“Can it be that all the great scientists of the past were really play-
ing a game, a game in which the rules are written not by man but by
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Figure 112. Another Escher mosaic. It appeared in color on the cover of Scientific
American, April 1961.

God? . . . When we play, we do not ask why we are playing – we just
play. Play serves no moral code except that strange code which, for
some unknown reason, imposes itself on the play. . . . You will search
in vain through scientific literature for hints of motivation. And as
for the strange moral code observed by scientists, what could be
stranger than an abstract regard for truth in a world which is full of
concealment, deception, and taboos? . . . In submitting to your con-
sideration the idea that the human mind is at its best when playing,
I am myself playing, and that makes me feel that what I am saying
may have in it an element of truth.”

This passage strikes a chord that is characteristic of Coxeter’s
writings. It is one reason why his book is such a treasure trove
for students of mathematics whose minds vibrate on similar wave-
lengths.



226 Sphere Packing, Lewis Carroll, and Reversi

ADDENDUM

Goodrich Company was not the first to patent a device based on the
Möbius strip. Lee De Forest, on January 16, 1923, received patent
1,442,682 for an endless Möbius filmstrip on which sound could be
recorded on both sides, and on August 23, 1949, Owen D. Harris
received patent 2,479,929 for an abrasive belt in the form of a
Möbius band. Readers informed me of both patents; there may be
others.

There is an extensive literature on Morley’s triangle. Coxeter’s
proof appears on page 23 of his book, which may be consulted for
some earlier references. A full discussion of the triangle, with various
other equilateral triangles that turn up (e.g., by trisecting exterior
angles), is given by W. J. Dobbs in Mathematical Gazette, February
1938. The theorem is discussed in H. F. Baker, Introduction to Plane
Geometry, 1943, pages 345–349. Since Coxeter’s book appeared,
scores of simple proofs of the theorem have been published.

The internal bisector problem, known also as the Steiner–
Lehmus theorem, has a literature even more vast than the Morley
triangle. The theorem was first suggested in 1840 by C. L. Lehmus
and first proved by Jacob Steiner. For the problem’s fascinating his-
tory, and its many solutions, see J. A. McBride, Edinburgh Math-
ematical Notes, Vol. 33, 1943, pages 1–13, and Archibald Hender-
son, “The Lehmus–Steiner–Terquem Problem in Global Survey,”
in Scripta Mathematica, Vol. 21, 1955, pages 223–312, and Vol.
22, 1956, pages 81–84. A number of college geometry textbooks
prove the theorem: L. S. Shively, An Introduction to Modern Geom-
etry, Chapman & Hall Ltd., page 141; David R. Davis, Modern Col-
lege Geometry, Addison-Wesley, page 61; Nathan Altshiller Court,
College Geometry, Johnson Publishing Co.; reprinted by Dover,
page 65. An extremely short proof, by G. Gilbert and D. MacDon-
nell, appeared in American Mathematical Monthly, Vol. 70, 1963,
page 79.

Soddy’s poem, “The Kiss Precise,” is reprinted in its entirety in
Clifton Fadiman’s entertaining anthology, The Mathematical Mag-
pie, Simon & Schuster, 1962, page 284. The last stanza general-
izes the theorem to spheres. A fourth stanza, generalizing to hyper-
spheres of n dimensions, was written by Thorold Gosset and printed
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Figure 113. Escher’s “Verbum,” a lithograph from 1942. (From the collection of
Cornelius Van S. Roosevelt, Washington, D.C.)

in Nature, January 9, 1937. This also will be found in Fadiman’s book,
page 285.

The fourth semiregular tessellation in Figure 110 (counting left
to right) is the basis of a Salvador Dali painting that he calls “Fifty
abstract pictures which as seen from two yards change into three
Lenines masquerading as Chinese and as seen from six yards appear
as the head of a royal tiger.” A black-and-white photograph of the
painting appeared in Time, December 6, 1963, page 90.

Figure 113 reproduces another of Escher’s remarkable mosaics: a
1942 lithograph entitled “Verbum.” Escher has described it as a pic-
torial story of creation. “Out of the nebulous grey of the ‘Verbum’
center (‘in the beginning was the Word’) triangular figures emerge.
The farther they are removed from the center, the sharper becomes
the contrast between light and dark, while their original straight out-
lines become serrated and curved. Alternately, the white becomes
background for the black objects and the black for the white objects.
Near the edge the figures have evolved into birds, fish and frogs,
each species in its proper element: sky, water and earth. At the same



228 Sphere Packing, Lewis Carroll, and Reversi

time there are gradual transformations from bird into fish, from
fish into frog and from frog again into bird. There is a perceptible
movement in a clockwise direction.” (The quotation is from The
Graphic Work of M. C. Escher, published in London by the Old-
bourne Press, 1961.)

Melvin Calvin, in his article on “Chemical Evolution” in Interstel-
lar Communication, edited by A. G. W. Cameron (Benjamin, 1963),
reproduces this lithograph, which he says he first saw hanging on
the wall of a chemist’s office in Holland. “The gradual merging
of the figures, one to another,” Calvin comments, “and the trans-
formations which eventually become apparent, seem to me to rep-
resent the essence not only of life but of the whole universe.”

For more about Escher see Chapter 8 of Book 6. The chapter
reprints an April 1966 Scientific American column, one of the ear-
liest tributes to Escher in English. Since then, interest in Escher
has produced a flood of books and articles. Of special interest is
Doris Schattschneider’s M. C. Escher: Visions of Symmetry (Freeman,
1990). My column resulted in a correspondence with Escher, and
my purchase from him of one of his originals. Had I anticipated
the rapid growth of his fame, I could have bought many more. They
would have been the best investments of my life!

ANSWERS

Readers were asked to find the radius of the largest sphere that can
be placed on a straight line (drawn on a plane) so that it is tangent to
two touching spheres, also on the line, with radii of 4 and 9 inches.
This can be viewed in cross section (see Figure 114) as a problem
involving four mutually tangent circles, the straight line considered
a circle of zero curvature. Frederick Soddy’s formula for “The Kiss
Precise” gives the two circles (drawn with dotted lines) radii of 1 and
11/25 inches and 36 inches, respectively. The larger circle is the mid-
section of the sphere that answers the problem.

POSTSCRIPT

Coxeter passed away peacefully in his home in Toronto on March
31, 2003. He had just completed the final touches on his final paper.
He was 96 years old.
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Figure 114. Answer to the kissing-spheres problem. (Artist: James Egleson)

In 1995 John Conway found a proof of Morley’s theorem that does
not use trigonometry. His proof is a beautiful example of wishful
thinking in mathematics. He begins with an analysis of triangle ABC
whose trisected angles have parts a, b, and c (Figure 115). Supposing
what he wants to show to be true, he finds the other angles in the fig-
ure, using a+ for a + 60 degrees, and so on. Each point is surrounded
by angles totaling 360 degrees and each triangle has angles total-
ing 180 degrees. All of this is easy to check with Conway’s notation
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+c++
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Figure 115. Analysis of triangle ABC. (Artist: Peter Renz)
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Figure 116. Synthesis of triangle ABC. (Artist: Peter Renz)

because we get a sum of 180 degrees if we have a, b, and c together
with two pluses. We get a sum of 360 degrees if we have a, b, and c,
and five pluses.

Next comes synthesis. Conway constructs six triangles similar to
those in his analysis (Figure 116). He chooses the scales of these tri-
angles so that all of the dotted segments in the collection are equal
in length, a length that is chosen to be equal to that of one of the
analogous segments in the original figure. Each of the three outer
triangles is then divided into three triangles, the middle of which
of these three is always isosceles. These middle triangles are isosce-
les because, as you can see, their base angles are equal. By congru-
ences by reflection you can also see that these dotted segments are
equal to successive sides of the central triangle. When these triangu-
lar pieces are pushed together, we get our original triangle ABC with
its angle trisectors and the central equilateral triangle, thus proving
Morley’s theorem.

More papers on Morley’s elegant theorem have appeared since
I listed a few in this chapter’s addendum. Some are given in the
Bibliography.
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CHAPTER EIGHTEEN

Bridg-it and Other Games

Man has never shown more ingenuity than in his games.
– Gottfried Wilhelm von Leibniz, in a letter to Pascal

mathematical games such as ticktacktoe, checkers, chess, and go
are contests between two players that (1) must end after a finite
number of moves, (2) have no random elements introduced by
devices such as dice and cards, and (3) are played in such a way that
both players see all the moves. If a game is of this type and each
player plays “rationally” – that is, according to his or her best strat-
egy – then the outcome is predetermined. It will be either a draw or
a certain win for the player who makes the first move or the player
who makes the second move. In this chapter we shall first consider
two simple games for which winning strategies are known, and then
a popular board game for which a winning strategy has just been
discovered and a class of board games not yet analyzed.

Many simple games in which pieces are placed on or removed
from a board lend themselves to what is called a symmetry strat-
egy. A classic example is the game in which two players take turns
placing a domino anywhere on a rectangular board. Each domino
must be put down flat, within the border of the rectangle, and with-
out moving a previously placed piece. There are enough dominoes
to cover the board completely when the pieces are packed side by
side. The player who puts down the last domino wins. The game
cannot end in a draw, so if both sides play rationally, who is sure to
win? The answer is the player who puts down the first domino. The
player’s strategy is to place the first domino exactly at the center of
the board (see Figure 117) and thereafter to match his opponent’s

232
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Figure 117. A domino board game. (Artist: James Egleson)

plays by playing symmetrically opposite as shown. It is obvious that
whenever the second player finds an open spot, there will always be
an open spot to pair with it.

The same strategy applies to any type of flat piece that retains the
same shape when it is given a rotation of 180 degrees. For example,
the strategy will work if the pieces are Greek crosses; it will not work
if they have the shape, say, of the letter T. Will it work if cigars are
used as pieces? Yes, but because of the difference in shape between
the ends the first cigar must be balanced upright on its flat end! It
is easy to invent new games of this sort, in which pieces of different
shapes are alternately placed on variously patterned boards accord-
ing to prescribed rules. In some cases a symmetry strategy provides
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a win for the first or second player; in other cases no such strategies
are possible.

A different type of symmetry play wins the following game. Any
number of coins are arranged in a circle on the table, each coin
touching two of its neighbors. Players alternately remove either one
coin or two touching coins. The player who takes the last coin wins.
In this case it is the player who makes the second move who can
always win. After the player who makes the first move has taken
away one or two coins, the remaining coins form a curved chain
with two ends. If this chain contains an odd number of coins, the
player who makes the second move takes the center coin. If it con-
tains an even number, she takes the two center coins. In both cases
she leaves two separate chains of equal length. From this point on,
whatever her opponent takes from one chain, she duplicates the
move by taking one or two coins from the other chain.

Both this and the preceding strategy are examples of what game
theorists sometimes call a pairing strategy: a strategy in which the
plays are arranged (not necessarily in symmetrical fashion) in pairs.
The optimal strategy consists of playing one member of the pair
whenever the opponent plays the other member. A striking example
of a pairing strategy is provided by the topological game of Bridg-it,
placed on the market in 1960 and now a popular game with children.
Some readers may remember that Bridg-it was introduced in Scien-
tific American in October 1958 as “the game of Gale”; it was devised
by David Gale, a mathematician at Brown University.

A Bridg-it board is shown in Figure 118. If it is played on paper,
one player uses a black pencil for drawing a straight line to connect
any pair of adjacent black spots, horizontally or vertically but not
diagonally. The other player uses a red pencil for similarly joining
pairs of red spots. Players take turns drawing lines. No line can cross
another. The winner is the first player to form a connected path
joining the two opposite sides of the board that are his color. (The
commercial Bridg-it board has raised spots and small colored plas-
tic bridges that are placed between spots.) For many years a proof
has been known that there is a winning strategy for the player who
makes the first move, but not until early this year was an actual strat-
egy discovered.

It was Oliver Gross, a games expert in the mathematics depart-
ment of the Rand Corporation, who cracked the game. When I
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Figure 118. A finished game of Bridg-it. Red has won. (Artist: James Egleson)

learned of his discovery, I wrote immediately for details, expecting
to receive a long, involved analysis that might prove too technical
for this department. To my astonishment the explanation consisted
of nothing more than the diagram reproduced in Figure 119 and
the following two sentences: Make the first play as indicated by the
black line in the lower left portion in the diagram. Thereafter, when-
ever your opponent’s play crosses the end of a dotted line, play by
crossing the other end of the same line. This ingenious pairing strat-
egy guarantees a win for the first player, though not necessarily in
the fewest moves. Gross describes his strategy as “democratic” in
the sense that “it plays stupidly against a stupid opponent, shrewdly
against a shrewd one, but wins regardless.” This is not the only pair-
ing strategy that Gross discovered, but he picked this one because of
its regularity and the ease with which it can be extended to a Bridg-it
board of any size.

Note that in the diagram no plays are indicated along the edges
of the board. Such plays are allowed by the rules of Bridg-it (in fact,
plays of this type are shown on the cover of the box), but there is
no point in making such a move, because it can contribute nothing
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Figure 119. Oliver Gross’s pairing strategy for winning at Bridg-it. (Artist: James
Egleson)

to winning the game. If in the course of playing the winning strategy
your opponent throws away a play by making an edge move, you can
counter with an edge move of your own. Or, if you prefer, you can
play anywhere on the board. If at some point later in the game this
random move is demanded by the strategy, you simply play some-
where else. Having an extra play on the board is sometimes an asset
but never a liability. Of course, now that a winning strategy for the
first player is known, Bridg-it ceases to be of interest except to play-
ers who have not yet heard the news.

Many board games with relatively simple rules have defied all
attempts at mathematical analysis. An example is provided by the
family of games that derives from halma, a game widely played in
England late in the nineteenth century. “The normal English way,”
wrote George Bernard Shaw in 1898, is “to sit in separate families in
separate rooms in separate houses, each person silently occupied
with a book, a paper, or a game of halma. . . . ” (This quotation is
given in The New Complete Hoyle, by Albert H. Morehead, Richard
L. Frey, and Geoffrey Mott-Smith, Doubleday.)
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The original halma (the name is a Greek word for “leap”) was
played on a checkerboard with 16 squares to a side, but the basic
mode of play was soon extended to other boards of varying size and
shape. The game known today as Chinese checkers is one of the
many later varieties of halma. I shall explain here only a simplified
version, which can be played on the familiar 8 × 8 checkerboard and
which leads to an entertaining solitaire puzzle that is still unsolved.

The game begins with the checkers in the standard starting posi-
tion for a checker game. Moves are the same as in checkers, with the
following exceptions.

1. No jumped pieces are removed.
2. A checker may jump pieces of either color.
3. Backward moves and jumps are permitted.

A chain of unbroken jumps may be made over pieces of both col-
ors, but one is not allowed to combine jumps with a nonjump move.
The object of the game for each player is to occupy his opponent’s
starting position. The first to do so is the winner. A player also wins
if the game reaches a situation in which his opponent is unable to
move.

Some notion of how difficult it is to analyze games of the halma
type can be had by working on the following puzzle. Arrange 12
checkers in the usual starting positions on the black squares of the
first three rows of a checkerboard. The rest of the board is empty.
In how few halma plays can you transport these pieces to the three
rows on the opposite side of the board? A “play” is defined as either
a diagonal checker move, forward or back, to a neighboring black
square; or a jump over one or more pieces. An unbroken jump may
include forward and backward leaps and is counted as a single play.
As in halma, it is not compulsory to jump when jumps are avail-
able, and a series of unbroken jumps may be terminated wherever
desired, even though more jumps are possible.

For convenience in recording a solution, number the black
squares, left to right and top to bottom, from 1 to 32.

ADDENDUM

As I pointed out in Book 2, Bridg-it is identical with a switching
game called Bird Cage that was invented by Claude E. Shannon.
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The Shannon game is described in one of Arthur Clarke’s short sto-
ries, “The Pacifist,” reprinted in Clifton Fadiman’s anthology, Math-
ematical Magpie (Simon & Schuster, 1962), pages 37–47; and in
Marvin Minsky, “Steps Toward Artificial Intelligence,” Proceedings of
the Institute of Radio Engineers, Vol. 49, 1961, page 23. In addition to
Bridg-it, manufactured by Hassenfeld Brothers, there is now a more
complicated version of the game, using chess-knight-move connec-
tions, on the market under the name of Twixt, put out by 3M Brand
Bookshelf Games.

Independently of Gross’s work, a winning strategy for Bridg-it
was discovered by Alfred Lehman, of the U.S. Army’s Mathemati-
cal Research Center, University of Wisconsin. Lehman found a gen-
eral strategy for a wide class of Shannon switching games, of which
Bird Cage (or Bridg-it) is one species. Lehman wrote me that he first
worked out his system in March 1959, and although it was men-
tioned in a Signal Corps report and in an outline sent to Shannon, it
was not then published. In April 1961 he spoke about it at a meet-
ing of the American Mathematical Society, a summary of his paper
appearing in the society’s June notices. A full, formal presentation,
“A Solution of the Shannon Switching Game,” was published in the
Journal of the Society of Industrial and Applied Mathematics, Vol. 12,
December 1964, pages 687–725. Lehman’s strategy comes close to
providing a winning strategy for Hex, a well-known topology game
similar to Bridg-it, but Hex slipped through the analysis and remains
unsolved.

In 1961 Günter Wenzel wrote a Bridg-it-playing program for the
IBM 1401 computer, basing it on the Gross strategy. His description
of the program was issued as a photocopied typescript by the IBM
Systems Research Institute, New York City, and in 1963 it was pub-
lished in Germany in the March issue of Bürotechnik und Automa-
tion.

ANSWERS

The problem of moving 12 checkers from one side of the board
to the other, using halma moves, brought a heavy response from
readers. More than 30 readers solved the problem in 23 moves, 49
solved it in 22 moves, 31 in 21 moves, and 14 in 20 moves. The
14 winners, in the order their letters are dated, are as follows:
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Edward J. Sheldon, Lexington, Massachusetts; Henry Laufer, New
York City; Donald Vanderpool, Towanda, Pennsylvania; Corrado
Böhm and Wolf Gross, Rome, Italy; Otis Shuart, Syracuse, New York;
Thomas Storer, Melrose, Florida; Forrest Vorks, Seattle, Washing-
ton; Georgianna March, Madison, Wisconsin; James Burrows, Stan-
ford, California; G. W. Logemann, New York City; John Stout, New
York City; Robert Schmidt, State College, Pennsylvania; G. L. Lupfer,
Solon, Ohio; and J. R. Bird, Toronto, Canada.

No proof that 20 is the minimum was received, although many
readers indicated a simple way to prove that at least 16 moves are
required. At the start, eight checkers are on odd rows 1 and 3; four
checkers are on even row 2. At the finish, eight checkers are on even
rows 6 and 8, and four checkers are on odd row 7. Clearly, four
checkers must change their parity from odd to even. This can be
done only if each of the four makes at least one jump move and one
slide move, thereby bringing the total of required moves to 16.

It is hard to conceive that the checkers could be transported in
fewer than 20 moves, although I must confess that when I presented
the problem I found it equally hard to conceive that it could be
solved in as few as 20 moves. Assuming that the black squares are
numbered 1 to 32, left to right and top to bottom, with a red square
in the board’s upper left corner, Sheldon’s 20-move solution (the first
answer to be received) is as follows:

1. 21–17 11. 14–5
2. 30–14 12. 23–7
3. 25–9 13. 18–2
4. 29–25 14. 32–16
5. 25–18 15. 27–11
6. 22–6 16. 15–8
7. 17–1 17. 8–4
8. 31–15 18. 24–8
9. 26–10 19. 19–3

10. 28–19 20. 16–12

This solution is symmetrical. Figure 120 shows the position of
the checkers after the tenth move. If the board is now inverted
and the first 10 moves are repeated in reverse order, the transfer is
completed. So far as I know, this is the first published solution in 20
moves. It is far from unique. Other symmetrical 20-move solutions
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29 30 31

25 26 28

21 22

17 20

13 16

11 12

5 7 8

2 3 4

Figure 120. Position of checkers after 10 moves. (Artist: Harold Jacobs)

were received, along with one wildly asymmetrical one from Mrs.
March, the only woman reader to achieve the minimum.

After the 20-move solution of the checker problem was pub-
lished, several readers sent proofs that at least 18 moves were
required. One reader, Vern Poythress, Fresno, California, sent a 20-
move-minimum proof; unfortunately, it is too long and involved to
give here.
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CHAPTER NINETEEN

Nine More Problems

1. COLLATING THE COINS

Arrange three pennies and two dimes in a row, alternating the coins
as shown in Figure 121. The problem is to change their positions to
those shown at the bottom of the illustration in the shortest possible
number of moves.

A move consists of placing the tips of the first and second fingers
on any two touching coins, one of which must be a penny and the
other a dime, then sliding the pair to another spot along the imag-
inary line shown in the illustration. The two coins in the pair must
touch at all times. The coin at left in the pair must remain at left;
the coin at right must remain at right. Gaps in the chain are allowed
at the end of any move except the final one. After the last move the
coins need not be at the same spot on the imaginary line that they
occupied at the start.

Figure 121. The pennies and dimes puzzle. (Artist: Alex Semenoick)

241
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If it were permissible to shift two coins of the same kind, the puz-
zle could be solved easily in three moves: slide 1, 2 to the left; fill
the gap with 4, 5; and then move 5, 3 from the right to the left end.
But with the proviso that each shifted pair must include a dime and
penny, it is a baffling and pretty problem. H. S. Percival, of Garden
City, New York, was the first to call it to my attention.

2. TIME THE TOAST

Even the simplest of household tasks can present complicated prob-
lems in operational research. Consider the preparation of three
slices of hot buttered toast. The toaster is the old-fashioned type,
with hinged doors on its two sides. It holds two pieces of bread at
once but toasts each of them on one side only. To toast both sides it
is necessary to open the doors and reverse the slices.

It takes 3 seconds to put a slice of bread into the toaster, 3 seconds
to take it out, and 3 seconds to reverse a slice without removing it.
Both hands are required for each of these operations, which means
that it is not possible to put in, take out, or turn two slices simultane-
ously. Nor is it possible to butter a slice while another slice is being
put into the toaster, turned, or taken out. The toasting time for one
side of a piece of bread is 30 seconds. It takes 12 seconds to butter a
slice.

Each slice is buttered on one side only. No side may be buttered
until it has been toasted. A slice toasted and buttered on one side
may be returned to the toaster for toasting on its other side. The
toaster is warmed up at the start. In how short a time can three slices
of bread be toasted on both sides and buttered?

3. TWO PENTOMINO POSERS

For pentomino buffs, here are two recently discovered problems, the
first one easy and the second difficult.

1. At the left of Figure 122, the 12 pentominoes are arranged to
form a 6 × 10 rectangle. Divide the rectangle, along the black
lines only, into two parts that can be fitted together again to



Nine More Problems 243

Figure 122. A pentomino problem. (Artist: Alex Semenoick)

make the three-holed pattern shown at the right of the illus-
tration.

2. Arrange the 12 pentominoes to form a 6 ×10 rectangle but
in such a way that each pentomino touches the border of
the rectangle. Of several thousand fundamentally different
ways of making the 6 ×10 rectangle (rotations and reflections
are not considered different), only two are known to meet
the condition of this problem. Asymmetrical pieces may be
turned over and placed with either side against the table.

4. A FIXED-POINT THEOREM

One morning, exactly at sunrise, a Buddhist monk began to climb
a tall mountain. The narrow path, no more than a foot or two wide,
spiraled around the mountain to a glittering temple at the summit.

The monk ascended the path at varying rates of speed, stopping
many times along the way to rest and to eat the dried fruit he carried
with him. He reached the temple shortly before sunset. After several
days of fasting and meditation he began his journey back along the
same path, starting at sunrise and again walking at variable speeds
with many pauses along the way. His average speed descending was,
of course, greater than his average climbing speed.

Prove that there is a spot along the path that the monk will occupy
on both trips at precisely the same time of day.

5. A PAIR OF DIGIT PUZZLES

The following two problems seem to call for a digital computer
so that hundreds of combinations of digits can be tested in a
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Figure 123. Can features of both squares be combined? (Artist: Alex Semenoick)

reasonable length of time. However, if approached properly and
with the aid of a clever dodge or two, both problems can be solved
with very little pencil-and-paper work. It is by such short cuts that
skillful programmers often can save their company valuable com-
puter time and in some cases even eliminate a need for the com-
puter.

1. The Square Root of Wonderful was the name of a recent play
on Broadway. If each letter in WONDERFUL stands for a
different digit (zero excluded) and if OODDF, using the same
code, represents the square root, then what is the square root
of wonderful?

2. There are many ways in which the nine digits (not count-
ing zero) can be arranged in square formation to represent a
sum. In the example shown on the left side of Figure 123, 318
plus 654 equals 972. There are also many ways to place the
digits on a square matrix so that, taken in serial order, they
form a rookwise connected chain. An example is shown on
the right side of the illustration. You can start at 1; then, mov-
ing like a chess rook, one square per move, you can advance
to 2, 3, 4, and so on to 9.

The problem is to combine both features in the same square. In
other words, place the digits on a 3 × 3 matrix so that they form
a rookwise connected chain, from 1 to 9, and also in such a way
that the bottom row is the sum of the first two rows. The answer
is unique.
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6. HOW DID KANT SET HIS CLOCK?

It is said that Immanuel Kant was a bachelor of such regular habits
that the good people of Königsberg would adjust their clocks when
they saw him stroll past certain landmarks.

One evening Kant was dismayed to discover that his clock had
run down. Evidently his manservant, who had taken the day off, had
forgotten to wind it. The great philosopher did not reset the hands
because his watch was being repaired and he had no way of know-
ing the correct time. He walked to the home of his friend Schmidt,
a merchant who lived a mile or so away, glancing at the clock in
Schmidt’s hallway as he entered the house.

After visiting Schmidt for several hours, Kant left and walked
home along the route by which he came. As always, he walked with
a slow, steady gait that had not varied in 20 years. He had no notion
of how long this return trip took. (Schmidt had recently moved into
the area and Kant had not yet timed himself on this walk.) Never-
theless, when Kant entered his house, he immediately set his clock
correctly.

How did Kant know the correct time?

7. PLAYING TWENTY QUESTIONS WHEN PROBABILITY
VALUES ARE KNOWN

In the well-known game Twenty Questions one person thinks of an
object, such as the Liberty Bell in Philadelphia or Lawrence Welk’s
left little toe, and another person tries to guess the object by asking
no more than 20 questions, each answerable by yes or no. The best
questions are usually those that divide the set of possible objects
into two subsets as nearly equal in number as possible. Thus if a
person has chosen as his or her “object” a number from 1 through
9, it can be guessed by this procedure in no more than 4 questions –
possibly fewer. In 20 questions one can guess any number from
1 through 220 (or 1,048,576).

Suppose that some of the possible objects are more likely to
be chosen than others and that the probability of each possible
object being picked is known. Can we find a scheme that will reduce
the average number of guesses needed to find the chosen object
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Figure 124. White to move and not checkmate. (Artist: Alex Semenoick)

over the average number of guesses we would get using the equal-
numbered group scheme just described? For example, assume that
a deck of cards consists of one ace of spades, two deuces of spades,
three threes, and on up to nine nines, making 45 spade cards in
all. The deck is shuffled; someone draws a card. You are to guess
the value of the card by asking yes–no questions. You might begin
by asking whether the chosen card is the ace. One time out of 45
you would guess the card in one step. If the card is not the ace,
then using the equal-groups method just described, you would pin
down the card out of the eight remaining cards in three further
guesses. Your average number of guesses over a large number of
trails would approximate (1/45)1 + (44/45)3 or 2.95 questions. How
can you reduce the number of questions needed on average that you
will probably have to ask?

8. DON’T MATE IN ONE

Karl Fabel, a German chess problemist, is responsible for the out-
rageous problem depicted in Figure 124. It appeared recently in
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Figure 125. Three types of polyhedrons. (Artist: Alex Semenoick)

Mel Stover’s delightful column of offbeat chess puzzles in Canadian
Chess Chat magazine.

You are asked to find a move for white that will not result in an
immediate checkmate of the black king.

9. FIND THE HEXAHEDRONS

A polyhedron is a solid bounded by plane polygons known as the
faces of the solid. The simplest polyhedron is the tetrahedron, con-
sisting of four faces, each a triangle (Figure 125, top). A tetrahedron
can have an endless variety of shapes, but if we regard its network of
edges as a topological invariant (that is, we may alter the length of
any edge and the angles at which edges meet but we must preserve
the structure of the network), then there is only one basic type of
tetrahedron. It is not possible, in other words, for a tetrahedron to
have sides that are anything but triangles.
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The five-sided polyhedron has two basic varieties (Figure 125,
middle and bottom). One is represented by the Great Pyramid of
Egypt (four triangles on a quadrilateral base). The other is repre-
sented by a tetrahedron with one corner sliced off; three of its faces
are quadrilaterals, and two are triangles.

John McClellan, an artist in Woodstock, New York, asks this ques-
tion: How many basic varieties of convex hexahedrons, or six-sided
solids, are there altogether? (A solid is convex if each of its sides can
be placed flat against a table top.) The cube is, of course, the most
familiar example.

If you search for hexahedrons by chopping corners from simpler
solids, you must be careful to avoid duplication. For example, the
Great Pyramid, with its apex sliced off, has a skeleton that is topolog-
ically equivalent to that of the cube. Be careful also to avoid models
that cannot exist without warped faces.

ANSWERS

1. The dime and penny puzzle can be solved in four moves as fol-
lows. Coins are numbered from left to right.
1. Move 3, 4 to the right of 5 but separated from 5 by a gap equal

to the width of two coins.
2. Move 1, 2 to the right of 3, 4, with coins 4 and 1 touching.
3. Move 4, 1 to the gap between 5 and 3.
4. Move 5, 4 to the gap between 3 and 2.

2. Three slices of bread – A, B, C – can be toasted and buttered
on the old-fashioned toaster in 2 minutes. Figure 126 shows the
way to do it.

After this solution appeared, I was staggered to hear from five
readers that the time could be cut to 111 seconds. What I had
overlooked was the possibility of partially toasting one side of a
slice, removing it, then returning it later to complete the toast-
ing. Solutions of this type arrived from Richard A. Brouse, a pro-
gramming systems analyst with IBM, San Jose, California; R. J.
Davis, Jr., of General Precision Inc., Little Falls, New Jersey; John
F. O’Dowd, Quebec; Mitchell P. Marcus, Binghamton, New York;
and Howard Robbins, Vestal, New York.
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Figure 126. Solution to the toaster puzzle. (Artist: James Egleson)

Davis’s procedure is as follows:

Seconds Operation

1–3 Put in slice A.

3–6 Put in B.

6–18 A completes 15 seconds of toasting on
one side.

(continued)
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Seconds Operation

18–21 Remove A.

21–23 Put in C.

23–36 B completes toasting on one side.

36–39 Remove B.

39–42 Put in A, turned.

42–54 Butter B.

54–57 Remove C.

57–60 Put in B.

60–72 Butter C.

72–75 Remove A.

75–78 Put in C.

78–90 Butter A.

90–93 Remove B.

93–96 Put in A, turned to complete the toasting
on its partially toasted side.

96–108 A completes its toasting.

108–111 Remove C.

All slices are now toasted and buttered, but slice A is still in
the toaster. Even if A must be removed to complete the entire
operation, the time is only 114 seconds.

Robbins pointed out that near the end, while A is finishing its
toasting, one can use the time efficiently by eating slice B.

3. Figure 127 shows how the 6 × 10 rectangle, formed with the
12 pentominoes, can be cut into two parts and the parts refit-
ted to make the 7 × 9 rectangle with three interior holes.
Figure 128 shows the only two possible patterns for the 6 × 10
rectangle in which all 12 pieces touch the border. The second
of these patterns is also remarkable in that it can be divided
(like the rectangle in the preceding pentomino problem) into
two congruent halves.

4. A man goes up a mountain one day, down it another day. Is
there a spot along the path that he occupies at the same time
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Figure 127. A 6 × 10 rectangle made up of pentominoes is refitted into a 7 × 9
one with three holes. (Artist: James Egleson)

of day on both trips? This problem was called to my attention
by psychologist Ray Hyman, of the University of Oregon, who in
turn found it in a monograph entitled “On Problem-Solving,” by
the German Gestalt psychologist Karl Duncker. Duncker writes
of being unable to solve it and of observing with satisfaction
that others to whom he put the problem had the same diffi-
culty. There are several ways to go about it, he continues, “but
probably none is more drastically evident than the following.
Let ascent and descent be divided between two persons on the
same day. They must meet. Ergo . . . With this, from an unclear
dim condition not easily surveyable, the situation has suddenly
been brought into full daylight.”

5. A. If OODDF is the square root of WONDERFUL, what number
does it represent? 0 cannot be greater than 2 because this would
give a square of 10 digits. It cannot be 1 because there is no way
that a number, beginning with 11, can have a square in which
the second digit is 1. Therefore 0 must be 2.

WONDERFUL must be between the squares of 22,000 and
23,000. The square of 22 is 484; the square of 23 is 529.

Figure 128. All the pentominoes in these 6 × 10 rectangles touch the border of
the rectangle. (Artist: James Egleson)
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Because the second digit of WONDERFUL is 2, we conclude that
WO = 52.

What values for the letters of 22DDF will make the square
equal 52NDERFUL? The square of 229 is 52,441; the square of
228 is 51,984. Therefore OODD is either 2,299 or 2,288.

We now use a dodge based on the concept of digital root.
The sum of the nine digits in WONDERFUL (we were told 0
is excluded) is 45, which in turn sums to 9, its digital root. Its
square root must have a digital root that, when squared, gives a
number with a digital root of nine. The only digital roots meet-
ing this requirement are 3, 6, and 9; therefore, OODDF must
have a digital root of 3, 6, or 9.

F cannot be 1, 5, or 6, because any of those digits would put
an F at the end of WONDERFUL. The only possible completions
of 2299F and 2288F that meet the digital root requirement are
22,998, 22,884, and 22,887.

The square of 22,887 is 523,814,769, the only one that fits the
code word WONDERFUL.

B. The timesaving insight in this problem is the realization
that if the nine digits are placed on a 3 × 3 matrix to form a rook-
wise connected chain from 1 to 9, the odd digits must occupy
the central and four corner cells. This is easily seen by color-
ing the nine cells like a checkerboard, with the center cell black.
Because there is one more black cell than white, the path must
begin and end on black cells, and all even digits will fall on white
cells.

There are 24 different ways in which the four even digits can
be arranged on the white cells. Eight of these, in which 2 is
opposite 4, can be eliminated immediately because they do not
permit a complete path of digits in serial order. One can quickly
check the remaining 16 patterns, keeping in mind that the sum
of the two upper digits on the left must be less than 10 and the
sum of the two upper digits on the right must be more than 10.
The second assertion holds because the two upper digits in the
middle are even and odd, yet their sum is an even digit. This
could happen only if 1 is carried over from the sum of the right
column. The only way to form the path so that the bottom row
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Figure 129. Solution to the chain-of-digits problem. (Artist: James Egleson)

of the square is the sum of the first and second rows is shown in
Figure 129.

When this solution appeared in Scientific American, Harmon
H. Goldstone, New York City, and Scott B. Kilner, Corona, Cal-
ifornia, wrote to explain a faster method they had used. There
are only three basically different rook paths (ignoring rotations
and reflections) on the field: the one shown in the solution, a
spiral path from corner to center, and an “S” path from cor-
ner to diagonally opposite corner. On each path the digits can
run in order in either direction, making six different patterns.
By considering each in its various rotations and reflections, one
quickly arrives at the unique answer.

Note that if the solution is mirror inverted (by a mirror held
above it), it forms a square, its digits still in rookwise serial order,
such that the middle row subtracted from the top row gives the
bottom row.

Charles W. Trigg, in a detailed analysis of solutions to ABC +
DEF = GHK (in Recreational Mathematics Magazine, No. 7,
February 1962, pp. 35–36), gives the only three solutions, in
addition to the one shown here, on which the digits 1 through 9
are in serial order along a queenwise connected path.

6. Immanuel Kant calculated the exact time of his arrival home as
follows. He had wound his clock before leaving, so a glance at
its face told him the amount of time that had elapsed during
his absence. From this he subtracted the length of time spent
with Schmidt (having checked Schmidt’s hallway clock when he
arrived and again when he left). This gave him the total time
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spent in walking. Because he returned along the same route, at
the same speed, he halved the total walking time to obtain the
length of time it took him to walk home. This added to the time
of his departure from Schmidt’s house gave him the time of his
arrival home.

Winston Jones, of Johannesburg, South Africa, wrote to sug-
gest another solution. Mr. Schmidt, in addition to being Kant’s
friend, was also his watchmaker. So while Kant sat and chatted
with him, he repaired Kant’s watch.

7. The key is to arrange your procedure so that you reach the
more probable alternatives by shorter paths. The inefficient
procedure given as an example in stating the problem could
be improved by asking as the first question whether the cho-
sen card is a nine, the most likely card, rather than by asking
whether it is the ace, the least probable card. Below I give a sys-
tematic way of devising efficient procedures. This is the basis of
Huffman coding, a procedure used in computer science.

The first step is to list in order the probability values for the
nine cards: 1/45, 2/45, 3/45, and so on. The two lowest values
are combined to form a new element: 1/45 plus 2/45 equals
3/45. In other words, the probability that the chosen card is
either an ace or deuce is 3/45. There are now eight elements:
the ace–deuce set, the three, the four, and so on up to nine.
Again the two lowest probabilities are combined: the ace–deuce
value of 3/45 and the 3/45 probability that the card is a three.
This new element, consisting of aces, deuces, and threes, has
a probability value of 6/45. This is greater than the values for
either the fours or fives, so when the two lowest values are com-
bined again, we must pair the fours and fives to obtain an ele-
ment with the value of 9/45. This procedure of pairing the low-
est elements is continued until only one element remains. It will
have the probability value of 45/45, or 1. The chart in Figure 130
shows how the elements are combined. The strategy for min-
imizing the number of questions is to take these pairings in
reverse order. Thus the first question could be as follows: Is the
card in the set of fours, fives, and nines? If not, you know it is in
the other set so you ask this next: Is it a seven or eight? Continue
on until the card is guessed.
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Figure 130. Strategy for minimizing the number of yes–no questions in guessing
one of a number of objects with probability values. (Artist: Bunji Tagawa)

Note that if the card should be an ace or deuce, it will take five
questions to pinpoint it. A binary strategy, of simply dividing the
elements as nearly as possible into halves for each question, will
ensure that no more than four questions need be asked, and
you might even guess the card in three. Nevertheless, the pre-
viously described procedure will give a slightly lower expected
minimum number of questions in the long run; in fact, the low-
est possible. In this case, the minimum number is three.

The minimum is computed as follows: Five questions are
needed if the card is an ace. Five are also needed if the card is
a deuce, but there are two deuces, making 10 questions in all.
Similarly, the three threes call for three times four, or 12, ques-
tions. The total number of questions for all 45 cards is 135, or an
average of three questions per card.

This strategy was first discovered by David A. Huffman, an
electrical engineer at M.I.T., while he was a graduate student
there. It is explained in his paper “A Method for the Con-
struction of Minimum-Redundancy Codes,” Proceedings of the
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Figure 131. The seven varieties of convex hexahedra. (Artist: James Egleson)

Institute of Radio Engineers, Vol. 40, September 1952, pages
1098–1101. It was later rediscovered by Seth Zimmerman, who
described it in his article on “An Optimal Search Procedure,”
American Mathematical Monthly, Vol. 66, October 1959, pages
690–693. A good nontechnical exposition of the procedure will
be found in John R. Pierce, Symbols, Signals and Noise (Harper,
1961), beginning on page 94.

8. In the chess problem, white can avoid checkmating black only
by moving his rook four squares to the west. This checks the
black king, but black is now free to capture the checking bishop
with his rook.

When this problem appeared in Scientific American, dozens
of readers complained that the position shown is not a pos-
sible one because there are two white bishops on the same
color squares. They forgot that a pawn on the last row can be
exchanged for any piece, not just the queen. Either of the two
missing white pawns could have been promoted to a second
bishop.

There have been many games by masters in which pawns
were promoted to knights. Promotions to bishops are admit-
tedly rare, yet one can imagine situations in which it would be
desirable, such as to avoid stalemating the opponent.

9. The seven varieties of convex hexahedrons, with topologically
distinct skeletons, are shown in Figure 131. I know of no simple
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way to prove that there are no others. An informal proof is given
by John McClellan in his article on “The Hexahedra Problem,”
Recreational Mathematics Magazine, No. 4, August 1961, pages
34–40.

POSTSCRIPT

The eminent mathematician Stanislaw Ulam, in his biography
Adventures of a Mathematician (Scribner’s, 1976, p. 281), suggested
adding the following rule to the Twenty Questions game. The person
who answers is permitted one lie. What is the minimum number of
questions required to determine a number between 1 and one mil-
lion? What if the person lies twice?

The general case is far from solved. If there are no lies, the answer
is of course 20. If there is just one lie, 25 questions suffice. This was
proved by Andrzej Pelc, in “Solution of Ulam’s Problem on Searching
with a Lie,” in Journal of Combinatorial Theory (Series A), Vol. 44,
January 1987, pages 129–140. The author also gives an algorithm for
finding the minimum number of needed questions for identifying
any number between 1 and n. A different proof of the 25 minimum
is given by Ivan Niven in “Coding Theory Applied to a Problem of
Ulam,” Mathematics Magazine, Vol. 61, December 1988, pages 275–
281.

When two lies are allowed, the answer of 29 questions was estab-
lished by Jurek Czyzowicz, Andrzej Pelc, and Daniel Mundici in the
Journal of Combinatorial Theory (Series A), Vol. 49, November 1988,
pages 384–388. In the same journal (Vol. 52, September 1989, pp. 62–
76), the same authors solved the more general case of two lies and
any number between 1 and 2n. Wojciech Guziki, ibid., Vol. 54, 1990,
pages 1–19, completely disposed of the two-lie case for any number
between 1 and n.

How about three lies? This has been answered only for numbers
between 1 and 1,000,000. The solution is given by Alberto Negro and
Matteo Sereno, in the same journal, Vol. 59, 1992. It is 33 questions,
and that’s no lie.

The four-lie case remains unsolved even for numbers in the 1 to
1,000,000 range. Of course if one is allowed to lie every time, there
is no way to guess the number. Ulam’s problem is closely related to
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Figure 132. The three concave hexahedra. (Artist: Bunji Tagawa)

error-correcting coding theory. Ian Stewart summarized the latest
results in “How to Play Twenty Questions with a Liar,” in New Scien-
tist (October 17, 1992), and Barry Cipra did the same in “All Theo-
rems Great and Small,” SIAM News (July 1992, p. 28).

Puzzles involving alternating coins that are to be collated by shift-
ing them in pairs have many variations and generalizations. Here
are some references: “Coin Strings,” by Jan M. Gombert in Math-
ematics Magazine, November-December 1969, pages 244–247; “An
Interlacing Transformation Problem,” by Yeong-Wen Hwang, in The
American Mathematical Monthly, Vol. 67, December 1960, pages
974–976; “Some New Results on a Shuffling Problem,” by James
Achugbue and Francis Shin, in The Journal of Recreational Mathe-
matics, Vol. 12, No. 2, 1979–1980, pages 126–129.

There are 34 topologically distinct convex heptahedra, 257 octa-
hedra, and 2,606 9-hedra. The three nonconvex (concave or re-
entrant) hexahedra are shown in Figure 132. There are 26 non-
convex heptahedra and 277 nonconvex octahedra. See the following
papers by P. J. Federico: “Enumeration of Polyhedra: The Number of
9-hedra,” Journal of Combinatorial Theory, Vol. 7, September 1969,
pages 155–161; “Polyhedra with 4 to 8 Faces,” Geometria Dedicata,
Vol. 3, 1975, pages 469–481; and “The Number of Polyhedra,” Philips
Research Reports, Vol. 30, 1975, pages 220–231.

A formula for calculating the number of topologically distinct
convex polyhedra, given the number of faces, remains unfound.

Paul R. Burnett called my attention to the Old Testament verse,
Zechariah 3:9. In a modern translation by J. M. Powis Smith it reads
as follows:
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For behold the stone I have set before Joshua; upon a single stone
with seven facets I will engrave its inscription.

An outline of a formal proof that there are just seven distinct con-
vex hexahedra is given in “Euler’s Formula for Polyhedra and Related
Topics,” by Donald Crowe, in Excursions into Mathematics, by
Anatole Beck, Michael Bleicher, and Donald Crowe (Worth, 1969,
pp. 29–30).

ADDENDUM

There is a vast literature on fixed-point theorems, of which the one
given here as Problem 4 is surely the simplest to prove. Such proofs
are “existence proofs” – they do no more than establish the existence
of at least one fixed point. They say nothing about how to find a fixed
point.

In topology a famous fixed-point theorem involves a shallow
box and a sheet of paper that exactly covers the bottom of the
box. Imagine that every point on the box’s bottom is paired with a
point directly above it on the paper. Now suppose that the sheet is
removed, crumpled into a ball, and then dropped back anywhere
inside the box. The theorem states that there will be at least one
point on the box that has directly above it its twin point on the crum-
pled paper!

Another famous fixed-point theorem in topology concerns a ball
on which a hair, several inches long, is attached to every point on the
ball’s surface. It can be shown that it is impossible to comb all the
hairs flat. There is sure to be at least one hair straight up, perpendic-
ular to the ball’s surface! See “The Hairy Ball Theorem Via Sperner’s
Lemma,” by Tyler Jarvis and James Tanton, in The American Mathe-
matical Monthly (August/September 2004), and the references there
cited. Incidentally, on a hairy torus, all hairs can be combed flat.

Closely related to the hairy ball is a proof that on the earth’s sur-
face, at any instant, there will be at least one spot where no wind
is blowing. A similar proof establishes that somewhere on the earth
there are at least two antipodal points with the same temperature
and two points of the same barometric pressure.

Fixed-point theorems have many applications in physics, even
in cosmology. Sir Roger Penrose is noted for his proof that when a
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massive star collapses into a black hole, there is sure to be a point in
the hole where properties of matter go to infinity. Just what happens
to matter at that point is one of the great mysteries of black-hole
theory.

A good popular introduction to fixed points is Marvin Shin-
brot’s article “Fixed-Point Theorems,” in Scientific American
(January 1966).



CHAPTER TWENTY

The Calculus of Finite Differences

the calculus of finite differences, a branch of mathematics that is
not too well known but is at times highly useful, occupies a halfway
house on the road from algebra to calculus. W. W. Sawyer, a mathe-
matician at Wesleyan University, likes to introduce it to students by
performing the following mathematical mind-reading trick.

Instead of asking someone to “think of a number” you ask him to
“think of a formula.” To make the trick easy, it should be a quadratic
formula (a formula containing no powers of x greater than x2). Sup-
pose he thinks of 5x2 + 3x − 7. While your back is turned so that you
cannot see his calculations, ask him to substitute 0, 1, and 2 for x and
then tell you the three values that result for the entire expression. The
values he gives you are −7, 1, 19. After a bit of scribbling (with prac-
tice you can do it in your head) you tell him the original formula!

The method is simple. Jot down in a row the values given to you.
In a row beneath write the differences between adjacent pairs of
numbers, always subtracting the number on the left from its neigh-
bor on the right. In a third row put the difference between the num-
bers above it. The chart will look like this:

−7 1 19
8 18

10

The coefficient of x2, in the thought-of formula, is always half the
bottom number of the chart. The coefficient of x is obtained by tak-
ing half the bottom number from the first number of the middle
row. The constant in the formula is simply the first number of the
top row.

261
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What you have done is something analogous to integration in cal-
culus. If y is the value of the formula, then the formula expresses a
function of y with respect to x. When x is given values in a simple
arithmetic progression (0, 1, 2, . . . ), then y assumes a series of values
(−7, 1, 19, . . . ). The calculus of finite differences is the study of such
series. In this case, by applying a simple technique to three terms of
a series, you were able to deduce the quadratic function that gener-
ated the three terms.

The calculus of finite differences had its origin in Methodus
Incrementorum, a treatise published by the English mathematician
Brook Taylor (who discovered the “Taylor theorem” of calculus)
between 1715 and 1717. The first important work in English on the
subject (after it had been developed by Leonhard Euler and oth-
ers) was published in 1860 by George Boole, of symbolic-logic fame.
Nineteenth-century algebra textbooks often included a smattering
of the calculus, and then it dropped out of favor except for its con-
tinued use by actuaries in checking annuity tables and its occa-
sional use by scientists for finding formulas and interpolating val-
ues. Today, as a valuable tool in statistics and the social sciences, it
is back in fashion once more.

For the student of recreational mathematics, there are elemen-
tary procedures in the calculus of finite differences that can be enor-
mously useful. Let us see how such a procedure can be applied to
the old problem of slicing a pancake. What is the maximum number
of pieces into which a pancake can be cut by n straight cuts, each of
which crosses each of the others? The number is clearly a function
of n. If the function is not too complex, the method of differences
may help us to find it by empirical techniques.

No cut at all leaves one piece, one cut produces two pieces, two
cuts yield four pieces, and so on. It is not difficult to find by trial
and error that the series begins like this: 1, 2, 4, 7, 11, . . . (see Figure
133). Make a chart as before, forming rows, each representing the
differences of adjacent terms in the row above:

Number of cuts 0 1 2 3 4

Number of pieces 1 2 4 7 11

First differences 1 2 3 4

Second differences 1 1 1
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0 CUTS 
1 PIECE

1 CUT 
2 PIECES

4 CUTS3 CUTS 
7 PIECES

2 CUTS 
4 PIECES 11 PIECES

Figure 133. The pancake-cutting problem. (Artist: James Egleson)

If the original series is generated by a linear function, the num-
bers in the row of first differences will be all alike. If the function is
a quadratic, identical numbers appear in the row of second differ-
ences. A cubic formula (no powers higher than x3) will have iden-
tical numbers in the row of third differences, and so on. In other
words, the number of rows of differences is the order of the formula.
If the chart required 10 rows of differences before the numbers in a
row became the same, you would know that the generating function
contained powers as high as x10.

Here there are only two rows, so the function must be a quadratic.
Because it is a quadratic, we can obtain it quickly by the simple
method used in the mind-reading trick.

The pancake-cutting problem has a double interpretation. We
can view it as an abstract problem in pure geometry (an ideal cir-
cle cut by ideal straight lines) or as a problem in applied geome-
try (a real pancake cut by a real knife). Physics is riddled with situa-
tions of this sort that can be viewed in both ways, and that involve
formulas obtainable from empirical results by the calculus of finite



264 Sphere Packing, Lewis Carroll, and Reversi

differences. A famous example of a quadratic formula is the formula
for the maximum number of electrons that can occupy each “shell”
of an atom. Going outward from the nucleus, the series runs like
this: 0, 2, 8, 18, 32, 50, . . . ; the first row of differences is 2, 6, 10, 14,
18, . . . ; the second row is 4, 4, 4, 4, . . . . Applying the key to the mind-
reading trick, we obtain the simple formula 2n2 for the maximum
number of electrons in the nth shell.

What do we do if the function is of a higher order? We can make
use of a remarkable formula discovered by Isaac Newton. It applies
in all cases, regardless of the number of tiers in the chart.

Newton’s formula assumes that the series begins with the value
of the function when n is 0. We call this number a. The first number
of the first row of differences is b, the first number of the next row is
c, and so on. The formula for the nth number of the series is

a + bn + cn(n − 1)
2

+ dn(n − 1)(n − 2)
2 · 3

+ en(n − 1)(n − 2)(n − 3)
2 · 3 · 4

+ · · ·

The formula is used only up to the point at which all further
additions would be zero. For example, if applied to the pancake-
cutting chart, the values of 1, 1, 1 are substituted for a, b, c in the
formula. (The rest of the formula is ignored because all lower rows
of the chart consist of zeros; d, e, f, . . . therefore have values of zero,
so consequently the entire portion of the formula containing these
terms adds up to zero.) In this way we obtain the quadratic function
1
2n2 + 1

2n + 1.

Does this mean that we have now found the formula for the max-
imum number of pieces produced by n slices of a pancake? Unfor-
tunately the most that can be said at this point is “Probably.” Why
the uncertainty? Because for any finite series of numbers there is
an infinity of functions that will generate them. (This is the same as
saying that for any finite number of points on a graph, an infinity of
curves can be drawn through those points.) Consider the series 0, 1,
2, 3, . . . . What is the next term? A good guess is 4. In fact, if we apply
the technique just explained, the row of first differences will be 1’s,
and Newton’s formula will tell us that the nth term of the series is
simply n. But the formula

n + 1
24

n(n − 1)(n − 2)(n − 3)
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also generates a series that begins 0, 1, 2, 3, . . . . In this case the series
continues, not 4, 5, 6, . . . but 5, 10, 21, . . . .

There is a striking analogy here with the way laws are discovered
in science. In fact, the method of differences can often be applied
to physical phenomena for the purpose of guessing a natural law.
Suppose, for example, that a physicist is investigating for the first
time the way in which bodies fall. She observes that after 1 second
a stone drops 16 feet, after 2 seconds 64 feet, and so on. She charts
her observations like this:

0 16 64 144 256
16 48 80 112

32 32 32

Actual measurements would not, of course, be exact, but the
numbers in the last row would not vary much from 32, so the physi-
cist assumes that the next row of differences consists of zeros. Apply-
ing Newton’s formula, she concludes that the total distance a stone
falls in n seconds is 16n2. But there is nothing certain about this law.
It represents no more than the simplest function that accounts for
a finite series of observations; the lowest order of curve that can be
drawn through a finite series of points on a graph. True, the law is
confirmed to a greater degree as more observations are made, but
there is never certainty that more observations will not require mod-
ification of the law.

With respect to pancake cutting, even though a pure mathemati-
cal structure is being investigated rather than the behavior of nature,
the situation is surprisingly similar. For all we now know, a fifth slice
may not produce the 16 pieces predicted by the formula. A single
failure of this sort will explode the formula, whereas no finite num-
ber of successes, however large, can positively establish it. “Nature,”
as George Pólya has put it, “may answer Yes or No, but it whispers
one answer and thunders the other. Its Yes is provisional, its No is
definitive.” Pólya is speaking of the world, not abstract mathemati-
cal structure, but it is curious that his point applies equally well to
the guessing of functions by the method of differences. Mathemati-
cians do a great deal of guessing, along lines that are often similar to
methods of induction in science, and Pólya has written a fascinating
work, Mathematics and Plausible Reasoning, about how they do it.
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Some trial-and-error testing, with pencil and paper, shows that
five cuts of a pancake do in fact produce a maximum of 16 pieces.
This successful prediction by the formula adds to the probability
that the formula is correct. However, until it is rigorously proved
(in this case it is not hard to do), it stands only as a good bet. Why
the simplest formula is so often the best bet, both in mathematical
and scientific guessing, is one of the lively controversial questions in
contemporary philosophy of science. For one thing, no one is sure
just what is meant by “simplest formula.”

Here are a few problems that are closely related to pancake cut-
ting and that are all approachable by way of the calculus of finite
differences. First you find the best guess for a formula; then you try
to prove the formula by deductive methods. What is the maximum
number of pieces that can be produced by n simultaneous straight
cuts of a flat figure shaped like a crescent moon? How many pieces
of cheesecake can be produced by n simultaneous plane cuts of a
cylindrical cake? Into how many parts can the plane be divided by
intersecting circles of the same size? Of different sizes? By intersect-
ing ellipses of different sizes? Into how many regions can space be
divided by intersecting spheres?

Recreational problems involving permutations and combina-
tions often contain low-order formulas that can be correctly guessed
by the method of finite differences and later (one hopes) proved.
With an unlimited supply of toothpicks of n different colors, how
many different triangles can be formed on a flat surface, using three
toothpicks for the three sides of each triangle? (Reflections are con-
sidered different, but not rotations.) How many different squares?
How many different tetrahedrons can be produced by coloring each
face a solid color and using n different colors? (Two tetrahedrons
are the same if they can be turned and placed side by side so
that corresponding sides match in color.) How many cubes with n
colors?

Of course, if a series is generated by a function other than a poly-
nomial involving powers of the variable, then other techniques in
the method of differences are called for. For example, the exponen-
tial function 2n produces the series 1, 2, 4, 8, 16, . . . . The row of
first differences is also 1, 2, 4, 8, 16, . . . , so the procedure explained
earlier will get us nowhere. Sometimes a seemingly simple situation
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Figure 134. Eighteen different seven-beaded necklaces can be formed with
beads of two colors. (Artist: James Egleson)

will involve a series that evades all efforts to find a general formula.
An annoying example is the necklace problem posed in one of
Henry Ernest Dudeney’s puzzle books. A circular necklace contains
n beads. Each bead is black or white. How many different necklaces
can be made with n beads? Starting with no beads, the series is 0, 2,
3, 4, 6, 8, 13, 18, 30, . . . . (Figure 134 shows the 18 different varieties
of necklace when n = 7.) I suspect that two formulas are interlocked
here, one for odd n, one for even, but whether the method of dif-
ferences will produce the formulas, I do not know. “A general solu-
tion . . . is difficult, if not impossible,” writes Dudeney. The problem
is equivalent to the following one in information theory: What is the
number of different binary code words of a given length, ruling out
as identical all those words that have the same cyclic order of digits,
taking them either right to left or left to right?

A much easier problem on which readers may enjoy testing their
skill was sent to me by Charles B. Schorpp and Dennis T. O’Brien,
of the Novitiate of St. Isaac Jogues in Wernersville, Pennsylvania:
What is the maximum number of triangles that can be made with
n straight lines? Figure 135 shows how 10 triangles can be formed
with five lines. How many can be made with six lines and what is the
general formula? The formula can first be found by the method of
differences; then, with the proper insight, it is easy to show that the
formula is correct.
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Figure 135. Five lines make 10 triangles. (Artist: James Egleson)

ADDENDUM

In applying Newton’s formula to empirically obtained data, one
sometimes comes up against an anomaly for the zero case. For
instance, Book 2, page 136, gives the formula for the maximum
number of pieces that can be produced by n simultaneous plane
cuts through a doughnut. The formula is a cubic,

n3 + 3n2 + 8n
6

,

that can be obtained by applying Newton’s formula to results
obtained empirically, but it does not seem to apply to the zero case.
When a doughnut is not cut at all, clearly there is one piece, whereas
the formula says there should be no pieces. To make the formula
applicable, we must define “piece” as part of a doughnut produced
by cutting. Where there is ambiguity about the zero case, one must
extrapolate backward in the chart of differences and assume for the
zero case a value that produces the desired first number in the last
row of differences.
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To prove that the formula given for the maximum number of
regions into which a pancake (circle) can be divided by n straight
cuts, consider first the fact that each nth line crosses n − 1 lines. The
n − 1 lines divide the plane into n regions. When the nth line crosses
these n regions, it cuts each region into two parts; therefore, every
nth line adds n regions to the total. At the beginning there is one
piece. The first cut adds one more piece, the second cut adds two
more pieces, the third cut adds three more, and so on up to the nth
cut, which adds n pieces. Therefore the total number of regions is
1 + 1 + 2 + 3 + · · · + n. The sum of 1 + 2 + 3 + · · · + n is 1

2n(n − 1).
To this we must add 1 to obtain the final formula.

The bead problem was given by Dudeney as Problem 275 in his
Puzzles and Curious Problems. John Riordan mentions the problem
on page 162, Problem 37, of his Introduction to Combinatorial Anal-
ysis (Wiley, 1958), indicating the solution without giving actual for-
mulas. (He had earlier discussed the problem in “The Combinato-
rial Significance of a Theorem of Pólya,” Journal of the Society for
Industrial and Applied Mathematics, Vol. 5, No. 4, December 1957,
pp. 232–234.) The problem was later treated in considerable detail,
with some surprising applications to music theory and switching
theory, by Edgar N. Gilbert and John Riordan, in “Symmetry Types
of Periodic Sequences,” Illinois Journal of Mathematics, Vol. 5, No. 4,
December 1961, pages 657–665. The authors give the following table
for the number of different types of necklaces, with beads of two col-
ors, for necklaces of 1 through 20 beads:

Number of Number of Number of Number of
Beads Necklaces Beads Necklaces

1 2 11 126
2 3 12 224
3 4 13 380
4 6 14 687
5 8 15 1,224
6 13 16 2,250
7 18 17 4,112
8 30 18 7,685
9 46 19 14,310

10 78 20 27,012
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The formulas for the necklace problem do not mean, by the way,
that Dudeney was necessarily wrong in saying that a solution was
not possible, because he may have meant only that it was not possi-
ble to find a polynomial expression for the number of necklaces as
a function of n so that the number could be calculated directly from
the formula without requiring a tabulation of prime factors. Because
the formulas include Euler’s phi function, the number of necklaces
has to be calculated with number theory. Dudeney’s language is not
precise, but it is possible that he would not have considered number
theoretic formulas a “solution.” At any rate, the calculus of finite dif-
ferences is not in any way applicable to the problem because of the
irregularity of primes, and only the recursive formulas are known.

Several dozen readers (too many for a listing of names) sent
correct solutions to the problem before Golomb’s formulas were
printed, some of them deriving it from Riordan, others working it
out entirely for themselves. Many pointed out that when the num-
ber of beads is a prime (other than 2), then the formula for the num-
ber of different necklaces becomes very simple:

2n−1 − 1
n

+ 2
n−1

2 + 1

The following letter from John F. Gummere, headmaster of
William Penn Charter School, Philadelphia, appeared in the letters
department of Scientific American in October 1961:

Sirs:
I read with great interest your article on the calculus of finite

differences. It occurs to me that one of the most interesting appli-
cations of Newton’s formula is one I discovered for myself long
before I had reached the calculus. This is simply applying the
method of finite differences to series of powers. In experiment-
ing with figures, I noticed that if you wrote a series of squares
such as 4, 9, 16, 25, 36, 49 and subtracted them from each other as
you went along, you got a series that you could similarly subtract
once again and come up with a finite difference.

So then I tried cubes and fourth powers and evolved a formula
to the effect that if n is the power, you must subtract n times,
and your constant difference will be factorial n. I asked my father
about this (he was for many years director of the Strawbridge
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NUMBER OF LINES

NUMBER OF TRIANGLES

FIRST DIFFERENCES

SECOND DIFFERENCES

THIRD DIFFERENCES

0

0 0 0

00

0

1

1 1 1

1

1

1

2

2

3

3

3 6

4

4 10

5

Figure 136. The answer to the triangle problem.

Memorial Observatory at Haverford College and teacher of math-
ematics). In good Quaker language he said: “Why, John, thee has
discovered the calculus of finite differences.”

ANSWERS

How many different triangles can be formed with n straight lines?
It takes at least three lines to make 1 triangle; four lines will make 4
triangles; five lines will make 10 triangles. Applying the calculus of
finite differences, one draws up the table shown in Figure 136.

The three rows of differences indicate a cubic function. Using
Newton’s formula, one finds the function to be 1/6n(n − 1)(n − 2).
This will generate the series 0, 0, 0, 1, 4, 10, . . . and therefore has a
good chance of being the formula for the maximum number of tri-
angles that can be made with n lines. But it is still just a guess, based
on a small number of pencil-and-paper tests. It can be verified by
the following reasoning.

The lines must be drawn so that no two are parallel and no more
than two intersect at the same point. Each line is then sure to inter-
sect every other line, and every set of three lines must form one tri-
angle. It is not possible for the same three lines to form more than
one triangle, so the number of triangles formed in this way is the
maximum. The problem is equivalent, therefore, to this question: In
how many different ways can n lines be taken three at a time? Ele-
mentary combinatorial theory supplies the answer: the same as the
formula obtained empirically.

Solomon W. Golomb, a mathematician mentioned earlier in the
chapter on polyominoes, was kind enough to send me his solution
to the necklace problem. The problem was to find a formula for
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1
2n φ(d1) ⋅ a   + φ(d2) ⋅ a   ⋅⋅⋅ + n ⋅ a     ][

n
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n
d2

n+1
2

1
2n φ(d1) ⋅ a   + φ(d2) ⋅ a   ⋅⋅⋅ +     ⋅(1+a)⋅ a  ]n

2[
n
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n
d2

n
2

Figure 137. Equations for the solution of the necklace problem.

the number of different necklaces that can be formed with n beads,
assuming that each bead can be one of two colors and not count-
ing rotations and reflections of a necklace as being different. The
formula proves to be far beyond the power of the simple method of
differences.

Let the divisors of n (including 1 and n) be represented by dl, d2,
d3, . . . . For each divisor we find what is called Euler’s phi function
for that divisor, symbolized as φ(d ). This function is the number of
positive integers, not greater than d, that have no common divisor
with d. It is assumed that 1 is such an integer, but not d. Thus φ(8)
is 4, because 8 has the following four integers that are prime to it: 1,
3, 5, 7. By convention, φ(1) is taken to be 1. Euler’s phi functions for
2, 3, 4, 5, 6, 7 are 1, 2, 2, 4, 2, 6, in the same order. Let a stand for the
number of different colors each bead can be. For necklaces with an
odd number of beads, the formula for the number of different neck-
laces with n beads is the one given at the top of Figure 137. When n
is even, the formula is the one at the bottom of the illustration.

The single dots are symbols for multiplication. Golomb ex-
pressed these formulas in a more compressed, technical form, but
I think the forms used here will be clearer to most readers. They
are more general than the formulas asked for, because they apply
to beads that may have any specified number of colors.

The formulas answering the other questions in the chapter are as
follows.

1. Regions of a crescent moon produced by n straight cuts:

n2 + 3n
2

+ 1

2. Pieces of cheesecake produced by n plane cuts:

n3 + 5n
6

+ 1
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3. Regions of the plane produced by n intersecting circles:

n2 − n + 2

4. Regions of the plane produced by n intersecting ellipses:

2n2 − 2n + 2

5. Regions of space produced by n intersecting spheres:

n(n2 − 3n + 8)
3

6. Triangles formed by toothpicks of n colors:

n3 + 2n
3

7. Squares formed with toothpicks of n colors:

n4 + n2 + 2n
4

8. Tetrahedrons formed with sides of n colors:

n4 + 11n2

12

9. Cubes formed with sides of n colors:

n6 + 3n4 + 12n3 + 8n2

24

POSTSCRIPT

Donald Knuth called my attention to the earliest known solution
of Dudeney’s bead problem. Percy A. MacMahon, whom we met
in Chapter 16, solved the problem as early as 1892. This and the
problem are discussed in Section 4.9 of Concrete Mathematics,
(1994, Addison-Wesley), by Ronald Graham, Donald Knuth, and
Oren Patashnik.

Figure 138 is from Sam Loyd’s famous Cyclopedia of Puzzles
(1914, Lamb Publishing Co.). For a slightly more complicated prob-
lem about slicing a doughnut, see Book 2, Chapter 13, of this series.
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